Mostrar el registro sencillo del ítem
Biomasa de raíces finas y fertilidad del suelo en bosques pluviales tropicales del pacífico colombiano
dc.contributor.author | Quinto Mosquera, Harley | spa |
dc.contributor.author | Moreno Hurtado, Flavio | spa |
dc.contributor.author | Caicedo Moreno, Haylin Yineth | spa |
dc.contributor.author | Perez Luis, May Thelis Yineth Perez Luis | spa |
dc.date.accessioned | 2016-01-01 00:00:00 | |
dc.date.accessioned | 2023-09-19T21:07:49Z | |
dc.date.available | 2016-01-01 00:00:00 | |
dc.date.available | 2023-09-19T21:07:49Z | |
dc.date.issued | 2015-01-01 | |
dc.identifier.issn | 0120-0739 | |
dc.identifier.uri | http://test.repositoriodigital.com:8080/handle/123456789/44397 | |
dc.description.abstract | Las raíces finas juegan un papel importante en la ecología y dinámica de los bosques tropicales. La biomasa de raíces finas (BRF) está determinada principalmente por las características del suelo (disponibilidad de agua y nutrientes) y es mayor en suelos con menor fertilidad. Para evaluar esta hipótesis se establecieron cinco parcelas permanentes de una hectárea en las localidades de Opogodó (Condoto) y Pacurita (Quibdó), Chocó, Colombia, donde se midió la BRF a 0-10 y 10-20 cm de profundidad, y la fertilidad edáfica (pH, nutrientes y textura), los cuales se relacionaron con la BRF. Ambas localidades presentaron suelos pobres en nutrientes, con mayor contenido de arena, N total y materia orgánica (MO) en Opogodó. La BRF presentó poca relación con la textura y el contenido de nutrientes del suelo, pues solo las correlaciones de la BRF con el pH y el contenido de arcilla fueron significativas. En ambas zonas la BRF disminuyó con la profundidad; los valores encontrados entre 0 - 20 cm de profundidad fueron de 5.91 y 6.28 t ha-1 en Opogodó y Pacurita, respectivamente. El análisis a escala de la región tropical mostró una relación inversa entre el contenido del P disponible y la BRF de los bosques. | spa |
dc.description.abstract | Fine roots play an important role in the ecology and dynamics of tropical forests. Fine root biomass (FRB) is mainly determined by soil characteristics (availability of water and nutrients) and is higher in soils with lower fertility. To test this hypothesis five permanent 1-hectare plots were established in the towns of Opogodó and Pacurita, where FRB was measured at 0-10 and 10-20 cm depth. In addition, soil fertility parameters (pH, nutrients and texture) were measured and related to FRB. Both towns presented soils poor in nutrients, with higher content of sand, total N and organic matter (OM) in Opogodó. The BRF presented little relation to texture and soil nutrient content, because only the correlations of the BRF with pH and content of clay were significant. In both areas FRB decreased with depth; values found between 0-20 cm depths were 5.91 t ha-1 and 6.28 t ha-1 in Opogodó and Pacurita respectively. The tropical region-wide analysis showed an inverse relationship between the available P content and the BRF of forests. | eng |
dc.format.mimetype | application/pdf | spa |
dc.format.mimetype | text/html | spa |
dc.language.iso | spa | spa |
dc.publisher | Universidad Distrital Francisco José de Caldas | spa |
dc.rights | Colombia Forestal - 2016 | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.source | https://revistas.udistrital.edu.co/index.php/colfor/article/view/7979 | spa |
dc.subject | carbon balance | eng |
dc.subject | biogeographic Chocó | eng |
dc.subject | Opogodó | eng |
dc.subject | pacurita | eng |
dc.subject | phosphorus | eng |
dc.subject | plant nutrition | eng |
dc.subject | tropical soils | eng |
dc.subject | Balance del carbono | spa |
dc.subject | Chocó biogeográfico | spa |
dc.subject | Fósforo | spa |
dc.subject | Nutrición vegetal | spa |
dc.subject | Opogodó | spa |
dc.subject | Pacurita | spa |
dc.subject | Suelos tropicales. | spa |
dc.title | Biomasa de raíces finas y fertilidad del suelo en bosques pluviales tropicales del pacífico colombiano | spa |
dc.type | Artículo de revista | spa |
dc.identifier.doi | 10.14483/udistrital.jour.colomb.for.2016.1.a04 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.type.local | Journal article | eng |
dc.title.translated | Fine Root Biomass and Soil Fertility in Tropical Rain Forests of the Colombian Pacific | eng |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | spa |
dc.relation.references | Adams, T., McCormack M. L. & Eissenstat, D. M. (2013). Foraging strategies in trees of different root morphology: the role of root lifespan. Tree Physiology, 33, 940 – 948. | spa |
dc.relation.references | Aerts, R. & Chapin III, F. S. (1999). The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research, 30, 1 – 67. | spa |
dc.relation.references | Alvarez-Clare, S., Mack, M. C. & Brooks, M. (2013). A direct test of nitrogen and phosphorus limitation to net primary productivity in a lowland tropical wet forest. Ecology, 94(7), 1540 – 1551. | spa |
dc.relation.references | Barbhuiya, A. R., Arunachalam A., Pandey H. N., Khan M. L.& Arunachalam, K. (2012). Fine root dynamics in undisturbed and disturbed stands of a tropical wet evergreen forest in northeast India. Tropical Ecology, 53(1), 69 – 79. | spa |
dc.relation.references | Barreto, L. H. & León J. D. (2005). Masa total y contenido de nutrientes en raíces finas de ecosistemas forestales (Pinus patula Schltdl y Cham, Cupressus lusitanica Mill y Quercus humboldtii Bonpl.) de Piedras Blancas, Antioquia-Colombia. Revista Facultad Nacional de Agronomía Medellín, 58 (2), 2907 – 2929. | spa |
dc.relation.references | Burke, M.K. & Raynal, D.J. (1994). Fine root growth phenology, production, and turnover in a northern hardwood forest ecosystem. Plant and Soil, 162, 135 – 146. | spa |
dc.relation.references | Cavelier, J. (1992). Fine-root biomass and soil properties in a semideciduous and a lower montane rain forest in Panama. Plant and Soil, 142, 187 – 201. | spa |
dc.relation.references | Chapin III, F.S., Matson, P.A., & Mooney, H.A. (2002). Principles of Terrestrial Ecosystem Ecology. Springer-Verlag New York, Inc. United States of America. 436 p. | spa |
dc.relation.references | Espeleta, J.F. & Clark, D. A. (2007). Multi-Scale Variation in Fine-Root Biomass in a Tropical Rain Forest: A Seven-Year Study. Ecological Monographs, 77(3), 377 – 404. | spa |
dc.relation.references | Finér, L., Ohashi, M., Noguchi, K., & Hirano, Y. (2011). Factors causing variation in fine root biomass in forest ecosystems. Forest Ecology and Management, 261, 265 – 277. | spa |
dc.relation.references | Gardi, C., Angelini, M., Barceló, S., Comerma, J., Cruz Gaistardo, C., Encina Rojas, A., Jones, A., Krasilnikov, P., Mendonça Santos Brefin, M.L., Montanarella, L., Muñiz Ugarte, O., Schad, P., Vara Rodríguez, M.I., & Vargas, R. (eds), (2014). Atlas de suelos de América Latina y el Caribe, Comisión Europea - Oficina de Publicaciones de la Unión Europea, L-2995 Luxembourg, 176 p. | spa |
dc.relation.references | Gower, S.T. (1987). Relations between mineral nutrient availability and fine root biomass in two Costa Rican tropical wet forests: a hypothesis. Biotropica, 19(2), 171– 175. | spa |
dc.relation.references | Green, J.J., Dawson L.A., Proctor, J., Duff, E.I. & Elston, D.A. (2005). Fine root dynamics in a tropical rain forest is influenced by rainfall. Plant and Soil, 276, 23 – 32. | spa |
dc.relation.references | Hendricks, J.J., Nadelhoffer, K.J. & Aber, J.D. (1993). Assessing the role of fine roots in carbon and nutrient cycling. Trends in Ecology and Evolution, 8,174 – 178. | spa |
dc.relation.references | Holdridge, L. P. (1996). Ecología Basada en las Zonas de Vida. San José, Costa Rica: Instituto Interamericano para la Agricultura. 216 p. | spa |
dc.relation.references | Hopkins, M.S., Reddell, P., Hewett, R.K. & Graham, A.W. (1996). Comparison of Root and Mycorrhizal Characteristics in Primary and Secondary Rainforest on a Metamorphic Soil in North Queensland, Australia. Journal of Tropical Ecology, 12 (6), 871 – 885. | spa |
dc.relation.references | Hoshmand, A. R. (1998). Statistical Methods for Environmental & Agricultural Sciences. Second edition. New York: CRC Press LLC. 439 p. | spa |
dc.relation.references | IGAC. Instituto Geográfico Agustín Codazzi. (2002). Mapa de Suelos de Colombia. Recuperado de: http://mapascolombia.igac.gov.co/wps/portal/mapasdecolombia/. | spa |
dc.relation.references | Jackson, R. B., Mooney, H. A. & Schulze. E.D. (1997). A global budget for fine root biomass, surface area, and nutrient contents. Proceedings of the National Academy of Sciences of the United States of America, 94, 7362 – 7366. | spa |
dc.relation.references | James, J.J., Ziegenhagen, L. & Aanderud, Z. T. (2010). Exploitation of Nutrient-Rich Soil Patches by Invasive Annual and Native Perennial Grasses. Invasive Plant Science and Management, 3, 169 – 177. | spa |
dc.relation.references | Jaramillo, V.J., Ahedo-Hernández, R. & Kauffman, J. B. (2003). Root biomass and carbon in a tropical evergreen forest of Mexico: changes with secondary succession and forest conversion to pasture. Journal of Tropical Ecology, 19, 457 – 464. | spa |
dc.relation.references | Jiménez, E.L., Moreno-Hurtado, F., Peñuela, M.C., Lloyd, J., Patiño, S., & Álvarez. E. (2008). Estimación de la masa de raíces finas en dos bosques de tierra firme sobre suelos contrastantes en la Amazonia colombiana. Pp. 165 – 196. En: Buitrago, A.I., & Jiménez, E.M. (Eds.). Gente, Tierra y Agua: Imani Mundo III. Universidad Nacional de Colombia Sede Amazonia. Instituto Amazónico de Investigaciones IMANI. Bogotá: Editorial Guadalupe Ltda. 240 p. | spa |
dc.relation.references | Kochsiek, A., Tan, S. & Russo, S.E. (2013). Fine root dynamics in relation to nutrients in oligotrophic Bornean rain forest soils. Plant Ecology, 214(5), 1385 – 0237. | spa |
dc.relation.references | Kummerow, J., Castillanos, J. Maas, M. & Larigauderie, A. (1990). Production of fine roots and the seasonality of their growth in a Mexican deciduous dry forest. Vegetatio, 90, 73 – 80. | spa |
dc.relation.references | Malagon D., Pulido, C., Llinas, R. D., Chamorro, C. & Fernández, J. (1995). Suelos de Colombia. Origen, Evolución, Clasificación, Distribución y uso. Bogotá: Instituto Geográfico Agustín Codazzi. Subdirección de Agrología. 632 p. | spa |
dc.relation.references | Martínez, J. O. (1993). Geomorfología. En: Leyva, P. (Ed.). Colombia Pacífico, Tomo I. Fondo para la Protección del Medio Ambiente “José Celestino Mutis” FEN Colombia. | spa |
dc.relation.references | Maycock, C.R. & Congdon, R.A. (2000). Fine Root Biomass and Soil N and P in North Queensland Rain Forests. Biotropica, 32(1), 185 – 190. | spa |
dc.relation.references | Metcalfe, D. B., Meir, P., Aragao, L. E., Da Costa, A. C. L., Braga, A. P., Gonḉalves, P. H. L., De Athaydes Silva Jr., J., De Almeida, S. S., Dawson, L. A., Malhi, Y., & Williams, M. (2008). The effects of water availability on root growth and morphology in an Amazon rainforest. Plant Soil, 311, 189 – 199. | spa |
dc.relation.references | Moreno-Hurtado, F. (2004). Soil Carbon Dynamics in Primary and Secondary Tropical Forests in Colombia. Thesis of Doctor of Philosophy in Biology. Miami: Florida International University. 208 p. | spa |
dc.relation.references | Osorio, N. W. (2014). Manejo de nutrientes en suelos del Trópico. Segunda edición. Medellín: Editorial L. Vieco S.A.S. 416 p. | spa |
dc.relation.references | Ostertag, R. (2001). Effects of nitrogen and phosphorus availability on fine-root dynamics in Hawaiian montane forests. Ecology, 82(2), 485–499. | spa |
dc.relation.references | Poveda, I.C., Rojas, C., Rudas, A., & Rangel, O. (2004). El Chocó biogeográfico: Ambiente Físico. En Rangel, O. Colombia Diversidad Biótica IV. El Chocó biogeográfico/ Costa Pacífica. Instituto de Ciencias Naturales. Bogotá: Universidad Nacional de Colombia. 1024 p. | spa |
dc.relation.references | Powers, J. S., Treseder, K. K. & Lerdau, M. T. (2005). Fine roots, arbuscular mycorrhizal hyphae and soil nutrients in four neotropical rain forests: patterns across large geographic distances. New Phytologist, 165, 913 – 921. | spa |
dc.relation.references | Quinto, H., & Moreno, F. H. (2014). Diversidad florística arbórea y su relación con el suelo en un bosque pluvial tropical del Chocó Biogeográfico. Revista Árvore, 38 (6), 1123 -1132. | spa |
dc.relation.references | R Development Core Team. (2012). R: A language and environment for statistical computing. Vienna, Austria. R Foundation for Statistical Computing. ISBN: 3-900051-07-0. Recuperado de http://www.r-project.org/. | spa |
dc.relation.references | Ruiz – Murcia, J. F. (2010). Cambio Climático en Temperatura, Precipitación y Humedad Relativa para Colombia Usando Modelos Meteorológicos de Alta Resolución (Panorama 2011-2100). Instituto de Hidrología, Meteorología y Estudios Ambientales – IDEAM. Subdirección de Meteorología. Nota Técnica IDEAM–METEO/005-2010. Bogotá, D. C., Mayo (2010). 91 p. | spa |
dc.relation.references | Sanford, R. L. & Cuevas, E. (1996). Root growth and rhizosphere interactions in tropical forests. En: Mulkey, S. S.; Chazdon, R. L and Smith, A. P. (Eds). Tropical forest plant ecophysiology. New York: Chapman and Hall. p. 268 – 300. | spa |
dc.relation.references | Saugier, B., Roy, J. & Mooney, H.A. (2001). Estimations of global terrestrial productivity: Converging toward a single number? in Roy, J., Saugier, B. & Mooney, H.A. (Eds). Terrestrial Global Productivity. San Diego, CA: Academic Press. 543–557. | spa |
dc.relation.references | Sayer, E. J., Wright, S. J., Tanner, E. V. J., Yavitt, J. B., Harms, K. E., Powers, J. S., Kaspari, M., Garcia, M. N., & Turner, B. L. (2012). Variable Responses of Lowland Tropical Forest Nutrient Status to Fertilization and Litter Manipulation. Ecosystems, 15, 387 – 400. | spa |
dc.relation.references | Silver, W. L., Thompson, A. W., Mcgroddy, M. E., Varner, R. K., Dias, J. D., Silva, H., Crill, P. M., & Keller, M. (2005). Fine root dynamics and trace gas fluxes in two lowland tropical forest soils. Global Change Biology, 11, 290 – 306. | spa |
dc.relation.references | Silver, W.L., Neff, J., McGroddy, M., Veldkamp, E., Keller, M. & Cosme, R. (2000). Effects of Soil Texture on Belowground Carbon and Nutrient Storage in a Lowland Amazonian Forest Ecosystem. Ecosystems, 3, 193 – 209. | spa |
dc.relation.references | Stark, N.M. & Jordan, C.F. (1978). Nutrient retention by the root mat of an Amazonian Rain Forest. Ecology, 59(3), 434 – 437. | spa |
dc.relation.references | Statistical Graphics Corp. (2002).StatgraphicsPlusCenturium Version 5.1. Recuperado de http://www.Statgraphics.com. | spa |
dc.relation.references | Trumbore, S., Da Costa, E. S., Nepstad, D. C., De Camargo, P. B., Martinelli, L., Ray, D., Restom, T., & Silver, W. (2006). Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration, Global Change Biology, 12, 217 – 229. | spa |
dc.relation.references | Vitousek, P.M. (1984). Litterfall, Nutrient Cycling, and Nutrient Limitation in Tropical Forests. Ecology, 65 (1), 285 – 298. Vitousek, P.M. & Sanford. R. L. (1986). Nutrient cycling in moist tropical forest. Annual Review of Ecology and Systematics, 17, 137 – 167. | spa |
dc.relation.references | Vogt, K.A., Grier, C.C. & Vogt, D.J. (1985). Production, turnover, and nutrient dynamics of above- and below-ground detritus of world forests. Advances in Ecological Research, 15, 303– 377. | spa |
dc.relation.references | West, R. (1957). Las tierras bajas del Pacífico colombiano. Instituto Colombiano de Antropología. Bogotá: Imprenta Nacional de Colombia. .300 pp. | spa |
dc.relation.references | Wright, S.J., Yavitt, J.B., Wurzburger, N., Turner, B. L., Tanner, E.V.J., Sayer, E.J., Santiago, L.S., Kaspari, M., Hedin, L.O., Harms, K.E., Garcia, M.N. & Corre, M.D. (2011). Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology, 92(8), 1616 – 1625. | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dc.relation.citationvolume | 19 | spa |
dc.relation.citationissue | 1 | spa |
dc.relation.citationedition | Núm. 1 , Año 2016 : Enero-Junio | spa |
dc.relation.ispartofjournal | Colombia forestal | spa |
dc.identifier.eissn | 2256-201X | |
dc.identifier.url | https://doi.org/10.14483/udistrital.jour.colomb.for.2016.1.a04 | |
dc.relation.citationstartpage | 53 | |
dc.relation.citationendpage | 67 | |
dc.relation.bitstream | https://revistas.udistrital.edu.co/index.php/colfor/article/download/7979/11069 | |
dc.relation.bitstream | https://revistas.udistrital.edu.co/index.php/colfor/article/download/7979/11246 | |
dc.type.content | Text | spa |
dspace.entity.type | Publication | spa |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Distrital tst 1 [372]