Mostrar el registro sencillo del ítem

dc.contributor.authorLequerica Támara, Manuel Eduardospa
dc.contributor.authorBernal, Mauricospa
dc.contributor.authorStevenson Díaz, Pablo Robertospa
dc.date.accessioned2017-01-01 00:00:00
dc.date.accessioned2023-09-19T21:07:58Z
dc.date.available2017-01-01 00:00:00
dc.date.available2023-09-19T21:07:58Z
dc.date.issued2016-01-01
dc.identifier.issn0120-0739
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/44419
dc.description.abstractLos bosques secundarios han aumentado su extensión en las últimas décadas; a su vez, han sido propuestos como elementos de conservación. El propósito de este estudio fue evaluar la composición vegetal y la diversidad en potreros y bosques (Granada, Cundinamarca, Colombia), para comprobar si los procesos sucesionales demuestran direccionalidad. Se ubicaron seis parcelas de 0.1 Ha del borde del bosque hacia el potrero y hacia el bosque. Para cada parcela se determinó la estructura de la vegetación, diversidad y composición florística. Se encontró que la diversidad de los bosques es significativamente superior a la de los potreros en etapas tempranas de sucesión. Por medio de ordenaciones, el estado sucesional de cada una de las parcelas y se caracterizó observando que la vegetación tiende a agruparse según su edad, evidencia de que la sucesión es un proceso direccional. Dibujando perfiles de vegetación y calculando la densidad de plántulas a lo largo del gradiente bosque-potrero se encontró que el reclutamiento de plántulas no es significativamente diferente entre el borde y el interior del bosque. Por último, se encontró una relación inversamente proporcional entre distancias florísticas y geográficas de las parcelas, señalando la discontinuidad como una barrera a la sucesión del bosque.spa
dc.description.abstractSecondary growth forests have increased their extension in the last decades, and have been suggested as potential conservation reservoirs. The objective of this study was to evaluate diversity and vegetation composition in pastures and forests at (Granada, Cundinamarca, Colombia) to assess if successional processes show evidence of directionality, we placed six plots by 0.1-ha in the forest edges, one towards the forest and other to the abandoned paddocks in three locations. We determined the average vegetation structure, diversity, and floristic composition for each plot. We found that diversity is significantly higher in forest plots than in paddock plots (at early succession stage) in high Andean cloud ecosystems. The successional stage of each one of the study sites was characterized using non-metric multidimensional scaling. This analysis shows that vegetation tends to group in function of age groups more that it does by geographic location of the plots, suggesting succession is a directional process. Seedling recruitment was not significantly different between forest edge and forest interior. An inverse relation was found between floristic and geographic distances, reflecting the fact that matrix discontinuity is a limiting factor for seed dispersal, thus it is a barrier for high Andean cloud forest succession. eng
dc.format.mimetypeapplication/pdfspa
dc.format.mimetypetext/htmlspa
dc.language.isospaspa
dc.publisherUniversidad Distrital Francisco José de Caldasspa
dc.rightsColombia Forestal - 2016spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttps://revistas.udistrital.edu.co/index.php/colfor/article/view/9976spa
dc.subjectBosque secundariospa
dc.subjectdistancia florísticaspa
dc.subjectdistancia geográficaspa
dc.subjectdiversidadspa
dc.subjectpotreros abandonadosspa
dc.subjectsecondary growth foresteng
dc.subjectfloristic distanceeng
dc.subjectgeographic distanceeng
dc.subjectdiversity abandoned paddockseng
dc.titleEvidencia en la direccionalidad del proceso de sucesión temprana del bosque altoandinospa
dc.typeArtículo de revistaspa
dc.identifier.doi10.14483/udistrital.jour.colomb.for.2017.1.a06
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.localJournal articleeng
dc.title.translatedDirectionality Evidence in High Andean Forest Early Successional Processeng
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.relation.referencesAdobe Systems. (2008). Photoshop CS4 extended versión 11.0.2. Michigan.spa
dc.relation.referencesArroyo-Rodriguez, V., Melo, F. P. L., Martinez-Ramos, M., Bongers, F., Chazdon, R. L., Meave, J.A., Norden, N., Santos, B.A., Leal, I. R., & Tabarelli, M. (2015). Multiple successional pathways in human-modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research. Biological Reviews, 000-000.spa
dc.relation.referencesCairns, J., & Wilson, E. O. (1988). Increasing diversity by restoring damaged ecosystems. Washington, D.C., National Academy Press, pp. 333-343.spa
dc.relation.referencesCavelier, J., Lizcano, D., & Pulido, M. T. (2001). Colombia. Bosques nublados del neotrópico. Santo Domingo de Heredia, Costa Rica: Instituto Nacional de Biodiversidad (IN Bio), pp. 443-496.spa
dc.relation.referencesCondit, R., Hubbell, S. P., & Foster, R. B. (1996). Assessing the response of plant functional types to climatic change in tropical forests. Journal of Vegetation Science, 7(3), 405-416. https://doi.org/10.2307/3236284spa
dc.relation.referencesDalling, J. W., Swaine, M. D., & Garwood, N. C. (1998). Dispersal patterns and seed bank dynamics of pioneer trees in moist tropical forest. Ecology, 79(2), 564-578. https://doi.org/10.1890/0012-9658(1998)079[0564:DPASBD]2.0.CO;2spa
dc.relation.referencesElgar, A.T., Freebody, K., Pohlman, C.L., Shoo, L.P., & Catterall, C.P. (2014). Overcoming barriers to seedling regeneration during forest restoration on tropical pasture land and the potential value of woody weeds. Frontiers in Plant Science, 200(5). https://doi.org/10.3389/fpls.2014.00200spa
dc.relation.referencesFacelli, J. M., D'Angela, E., & Leon, R. J. (1987). Diversity changes during pioneer stages in a subhumid pampean grassland succession. American Midland Naturalist, 17-25. https://doi.org/10.2307/2425703spa
dc.relation.referencesFlorentine, S. K. & Westbrooke, M. E. (2004). Restoration on abandoned tropical pasturelands—do we know enough? Journal for Nature Conservation, 12(2), 85-94. https://doi.org/10.1016/j.jnc.2003.08.003spa
dc.relation.referencesForest Restoration Research Unit. (2008). Research for Restoring Tropical Forest Ecosystems: A Practical Guide. Thailand: Biology Department, Science Faculty-Chiang Mai University, pp. 39-40spa
dc.relation.referencesGentry, A. H. (2001). Patrones de diversidad y composición florística en los bosques de las montañas neotropicales. En M. Kapelle & A. Brown (eds.), Bosques nublados del Neotropico. Costa Rica: Instituto Nacional de Biodiversidad (INBio), pp. 84-123.spa
dc.relation.referencesGuariguata, M. R., & Ostertag, R. (2001). Neotropical secondary forest succession: changes in structural and functional characteristics. Forest ecology and management, 148(1), 185-206. https://doi.org/10.1016/S0378-1127(00)00535-1spa
dc.relation.referencesGunaratne, A.M.T.A, Gunatilleke, G.V.S., Gunatilleke, I.A.U.N., Madawala, H.M.S.P., & Burslem, D.G.R.P. (2014) Overcoming ecological barriers to tropical lower montane forest succession on anthropogenic grasslands: Synthesis and future prospects. Forest Ecology and Management, 329, 340-350. https://doi.org/10.1016/j.foreco.2014.03.035spa
dc.relation.referencesHallé, F., Oldeman, R. A., & Tomlinson, P. B. (1978). Tropical trees and forests: an architectural analysis. Berlin: Springer-Verlag. https://doi.org/10.1007/978-3-642-81190-6spa
dc.relation.referencesHamilton, L. (1995). Una campaña por los bosques nublados, ecosistemas únicos y valiosos en peligro. Serie Focus de la UICN.spa
dc.relation.referencesHilera-Lanzos, R., & J. M. Diez-Hernández. (2006). Directrices de restauración ecológica en cuencas hidrográficas andinas. Plan de manejo ambiental de la cuenca hidrográfica La Floresta-La Novita. Bogotá. Colombia. Valladolid: Universidad de Valladolidspa
dc.relation.referencesHubbell, S. P. (1979). Tree dispersion, abundance, and diversity in a tropical dry forest. Science, 203(4387),1299-1309. https://doi.org/10.1126/science.203.4387.1299spa
dc.relation.referencesOksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P.R., R. B. O'Hara, R. B., G. L. Simpson, G. L., Solymos, P., Henry, M., Stevens, H., & Wagner, H. (2015). Vegan: Community Ecology Package. R package version 2.3-0. Recuperado de http://CRAN.R-project.org/package=veganspa
dc.relation.referencesJost, L. (2006) Entropy and diversity. Oikos,113(2), 363-375. https://doi.org/10.1111/j.2006.0030-1299.14714.xspa
dc.relation.referencesKok, K., Verweij, P. A., & Beukema, H. (1995). Effects of cutting and grazing on Andean treeline vegetation. Biodiversity and conservation of neotropical Monatne forests (pp. 527-539). New York: New York Botanical Garden.spa
dc.relation.referencesLieberman, D., Lieberman, M., Hartshorn, G., & Peralta, R. (1985). Growth rates and age-size relationships of tropical wet forest trees in Costa Rica. Journal of Tropical Ecology, 1(02), 97-109. https://doi.org/10.1017/S026646740000016Xspa
dc.relation.referencesLohbeck, M., Poorter, L., Martínez-Ramos, M., Rodríguez-Velázquez, J., van Breugel, M., & Bongers, F. (2014). Changing drivers of species dominance during tropical forest succession. Functional Ecology, 28(4), 1052-1058. https://doi.org/10.1111/1365-2435.12240spa
dc.relation.referencesLongland, W. S., & Price, M.V. (1991) Direct Observations of Owls and Heteromyid Rodents: Can Predation Risk Explain Microhabitat Use? Ecology, 72(6), 2261-2273. https://doi.org/10.2307/1941576spa
dc.relation.referencesMatteucci, S.D., & Colma, A. (1982). Metodología para el estudio de la vegetación (pp. 56-62). Washintong D.C.: Secretaría general de la Organización de los Estados Americanos; Programa regional de desarrollo científico y Tecnológico.spa
dc.relation.referencesMurcia, C. (1997). Evaluation of Andean alder as a catalyst for the recovery of tropical cloud forests in Colombia. Forestry Ecology and Management, 99(1-2), 163-170. https://doi.org/10.1016/S0378-1127(97)00202-8spa
dc.relation.referencesNorden, N., R. L. Chazdon, et al. (2009). Resilience of tropical rain forests: tree community reassembly in secondary forests. Ecology Letters, 12(5), 385-394. https://doi.org/10.1111/j.1461-0248.2009.01292.xspa
dc.relation.referencesNorden, N., Angarita, H. A., Bongers, F., Martínez-Ramos, M., Granzow-de la Cerda, I., van Breugel, M., & Chazdon, R. L. (2015). Successional dynamics in neotropical forests are as uncertain as they are predictable. Proceedings of the National Academy of Sciences, 112(26), 8013-8018. https://doi.org/10.1073/pnas.1500403112spa
dc.relation.referencesOosterhoorn, M., & Kappelle, M. (2000). Vegetation structure and composition along an interior-edge-exterior gradient in a Costa Rican montane cloud forest. Forest Ecology and Management,126, 291-307. https://doi.org/10.1016/S0378-1127(99)00101-2spa
dc.relation.referencesOrtega-Pieck, A., López-Barrera, F., Ramírez-Marcial, N., & García-Franco, J. G. (2011). Early seedling establishment of two tropical montane cloud forest tree species: The role of native and exotic grasses. Forest Ecology and Management, 261(7), 1336-1343. https://doi.org/10.1016/j.foreco.2011.01.013spa
dc.relation.referencesPaine, C. T., & Harms, K. E. (2009). Quantifying the effects of seed arrival and environmental conditions on tropical seedling community structure. Oecologia,1 60(1), 139-150. https://doi.org/10.1007/s00442-008-1269-6spa
dc.relation.referencesPedraza, R. A., & Williams-Linera, G. (2003). Evaluation of native tree species for the rehabilitation of deforested areas in a Mexican cloud forest. New forests, 26(1), 83-99. https://doi.org/10.1023/A:1024423511760spa
dc.relation.referencesPosada, J. M., Aide, T. M., & Cavelier, J. (2000). Cattle and weedy shrubs as restoration tools of tropical montane rainforest. Restoration ecology, 8(4), 370-379. https://doi.org/10.1046/j.1526-100x.2000.80052.xspa
dc.relation.referencesR Core Team. (2015). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. ISBN 3-900051-07-0, Recuperado de http://www.R-project.org.spa
dc.relation.referencesSalamanca, B., & Camargo, G. (2000). Protocolo distrital de restauración ecológica. Bogotá D.C.: Alcaldía Mayor, Departamento Técnico Administrativo del Medio Ambiente(DAMA).spa
dc.relation.referencesShoo, L.P., & Catterall, C.P. (2013). Stimulating Natural Regeneration of Tropical Forest on Degraded Land: Approaches, Outcomes, and Information Gaps. Restoration Ecology. 21(6), 670-677. https://doi.org/10.1111/rec.12048spa
dc.relation.referencesStrayer, D. L., Power, M. E., Fagan, W. F., Pickett, S. T., & Belnap, J. (2003). A classification of ecological boundaries. BioScience, 53(8), 723-729. https://doi.org/10.1641/0006-3568(2003)053[0723:ACOEB]2.0.CO;2spa
dc.relation.referencesSwaine, M. D., & Whitmore, T. C. (1988). On the definition of ecological species groups in tropical rain forests. Vegetatio, 75(1-2), 81-86. https://doi.org/10.1007/BF00044629spa
dc.relation.referencesTerborgh, J., & Foster, R. B. (1996). Tropical tree communities: a test of the nonequilibrium hypothesis. Ecology, 77(2), 561-567. https://doi.org/10.2307/2265630spa
dc.relation.referencesTurner, I. M. (2001). The ecology of trees in the tropical rainforest. Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9780511542206spa
dc.relation.referencesWright, S. J., & Muller-Landau, H. C. (2006). The Future of Tropical Forest Species. Biotropica, 38(3), 287-301. https://doi.org/10.1111/j.1744-7429.2006.00154.xspa
dc.relation.referencesYoung, K. R. (1991). Natural History of an Understory Bamboo (Chusquea sp.) in a Tropical Timberline Forest. Biotropica, 23(4 parte B), 542-554.spa
dc.relation.referencesZanne, A. E. & Chapman, C. A. (2001). Expediting reforestation in tropical grasslands: distance and isolation from seed sources in plantations. Ecological Applications, 11(6), 1610-1621. https://doi.org/10.1890/1051-0761(2001)011[1610:ERITGD]2.0.CO;2spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.relation.citationvolume20spa
dc.relation.citationissue1spa
dc.relation.citationeditionNúm. 1 , Año 2017 : Enero-Juniospa
dc.relation.ispartofjournalColombia forestalspa
dc.identifier.eissn2256-201X
dc.identifier.urlhttps://doi.org/10.14483/udistrital.jour.colomb.for.2017.1.a06
dc.relation.citationstartpage63
dc.relation.citationendpage84
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/9976/12148
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/9976/12343
dc.type.contentTextspa
dspace.entity.typePublicationspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Colombia Forestal - 2016
Excepto si se señala otra cosa, la licencia del ítem se describe como Colombia Forestal - 2016