Mostrar el registro sencillo del ítem

dc.contributor.authorBeltrán Pineda, Mayra Eleonoraspa
dc.contributor.authorRocha Gil, Zulma Edelmiraspa
dc.contributor.authorBernal Figueroa, Andrea Angelicaspa
dc.contributor.authorPita Morales, Luz Adrianaspa
dc.date.accessioned2017-07-01 00:00:00
dc.date.accessioned2023-09-19T21:08:25Z
dc.date.available2017-07-01 00:00:00
dc.date.available2023-09-19T21:08:25Z
dc.date.issued2017-07-01
dc.identifier.issn0120-0739
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/44425
dc.description.abstractLas iniciativas en restauración ecológica que incluyen técnicas de revegetalización son procesos complejos que pueden ser afectados por muchas variables bióticas y abióticas. Dentro de estas últimas, las poblaciones de microorganismos juegan un rol fundamental en la liberación de nutrientes y, por tanto, en el establecimiento de especies vegetales en las áreas a restaurar. El estudio buscó evaluar la densidad de las comunidades microbianas relacionadas con los ciclos de nutrientes del carbono, fósforo y nitrógeno conocidas como grupos funcionales presentes en un suelo revegetalizado y otro sin revegetalizar en el municipio de Vila de Leyva. Los métodos empleados en esta evaluación fueron: recuento en placa estándar utilizando medios de cultivo selectivos y análisis de correlación entre grupos para evidenciar posibles interacciones de tipo ecológico. En general, las poblaciones de todos los grupos funcionales de microorganismos están presentes en las dos zonas evaluadas. Solo se encontraron diferencias significativas para los recuentos de las bacterias solubilizadoras de fosfato y las poblaciones de microorganismos proteolíticos (p≤0,05). Se encontraron algunas correlaciones estadísticamente significativas entre unos grupos microbianos que podrían indicar procesos de cometabolismo y competencia entre poblaciones microbianas del suelo, los cuales favorecen el equilibrio ecológico del mismo.spa
dc.description.abstractEcological restoration initiatives that include revegetation techniques are complex processes that can be affected by many biotic and abiotic variables. Among the latter, populations of microorganisms play a fundamental role in the release of nutrients and therefore in the establishment of plant species in the areas to be restored. The study sought to evaluate the density of microbial communities related to the nutrient cycles of carbon, phosphorus and nitrogen known as functional groups present in a revegetated soil and another zone without intervention in the municipality of Villa de Leyva. Methods used in this evaluation were standard plate counts using selective culture media,  also a correlation analysis were also performed between groups to evidence possible ecological interactions. In general populations of all functional groups of microorganisms are present in the two zones evaluated. Only significant differences were found for counts of phosphate solubilizing bacteria and proteolytic microorganism populations (p≤0.05). Some statistically significant correlations were found between some microbial groups that could indicate processes of cometabolism and competition among microbial populations of the soil, which favors the ecological balance of the same.eng
dc.format.mimetypeapplication/pdfspa
dc.format.mimetypetext/htmlspa
dc.language.isospaspa
dc.publisherUniversidad Distrital Francisco José de Caldasspa
dc.rightsColombia Forestal - 2017spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttps://revistas.udistrital.edu.co/index.php/colfor/article/view/10400spa
dc.subjecterosiónspa
dc.subjectgrupos funcionales de microorganismosspa
dc.subjectrevegetalizaciónspa
dc.subjectsoil microorganismseng
dc.subjectecological restorationeng
dc.subjectrevegetation.eng
dc.titleMicroorganismos funcionales en suelos con y sin revegetalización en el municipio de Villa de Leyva, Boyacáspa
dc.typeArtículo de revistaspa
dc.identifier.doi10.14483/udistrital.jour.colomb.for.2017.2.a05
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.localJournal articleeng
dc.title.translatedFunctional microorganisms in soil with and without revegetation in the municipality of Villa de Leyva-Boyacaeng
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.relation.referencesAbakumov, E., Cajthaml, T., Brus, J. & Frouz, J. (2013). Humus accumulation, humification and humic acid composition in soils of two post-mining chronosequences after coal mining.Journal of Soils Sediments, 13, 491- 500. https://doi.org/10.1007/s11368-012-0579-9spa
dc.relation.referencesAlcaldía de Villa de Leyva. (2012). Plan de desarrollo municipal 2012-2015. Villa de Leyva: Alcaldía Municipal. 34 p.spa
dc.relation.referencesArcher, S. & Pyke, D. (1991). Plant-animal interactions affecting plant establishment and persistence on revegetated rangeland. Journal of Range Management, 44(8), 558-565. https://doi.org/10.2307/4003036spa
dc.relation.referencesArellano, F. & Olmos, J. (1999). Enzimas amilolíticas microbianas. Biotecnologia, 4(3), 115-121.spa
dc.relation.referencesAtlas, R. & Bartha, R. (2002). Ecología microbiana y Microbiología ambiental. Madrid-Espa-a: Pearson Educación S.A. 608 p.spa
dc.relation.referencesBashan, Y., Puente, E., Salazar, B., De-Bashan, L., Bacilio, M., Hernández, J., Leyva, L., Romero, B., Villalpando, R. & Bethlenfalvay, G. (2015). Reforestación de tierras erosionadas en el desierto: el papel de las bacterias promotoras de crecimiento en plantas y la materia orgánica. Suelos Ecuatoriales, 35 (1), 70-77.spa
dc.relation.referencesBeltrán, M. & Lizarazo, L. (2013). Grupos funcionales de microorganismos en suelos de páramo afectados por incendios forestales. Revista de Ciencias, 17(2), 121-136.spa
dc.relation.referencesBeltrán, M. (2014). La solubilización de fosfatos como estrategia microbiana para promover el crecimiento vegetal. Corpoica Ciencia y Tecnología Agropecuaria, 15(1), 101-113. https://doi.org/10.21930/rcta.vol15_num1_art:401spa
dc.relation.referencesBizuye, A., Sago, A., Admasu, G., Getachew, H., Kassa, P. & Amsaya, M. (2014). Isolation, optimization and characterization of protease producing bacteria from soil and water in Gondar town, North West Ethiopia. International Journal of Bacteriology, Virology and Immunology, 1(3), 020-024.spa
dc.relation.referencesBouyoucos, G. (1962). Hydrometer method improved for making particle size analysis of soil. Agronomy Journal, 54, 464-465. https://doi.org/10.2134/agronj1962.00021962005400050028xspa
dc.relation.referencesBray, R. & Kurtz, L. (1945). Determination of total, organic and available forms of phosphorus in soils. Soil Science, 59(1), 39-46. https://doi.org/10.1097/00010694-194501000-00006spa
dc.relation.referencesCao, C., Jiang, D., Teng, X., Jiang, Y., Liang, W. & Cui, Z. (2008). Soil chemical and microbiological properties along a chronosequence of Caragana microphylla Lam. plantations in the Horqin sandy land of Northeast China. Applied soil Ecology, 40,78-85. https://doi.org/10.1016/j.apsoil.2008.03.008spa
dc.relation.referencesCarniero, R., Mendes, L., Lovato, P., Carvalhi, A. & Vivaldi, L. (2004). Indicadores biológicos associados ao ciclo del fósforo em solos de cerrado sob plantio direto e plantio convencional. Pesquisa Agropecuaria Brasilera, 39(7), 661-669. https://doi.org/10.1590/S0100-204X2004000700007spa
dc.relation.referencesCheng, M. & An, S. (2015). Responses of soil nitrogen, phosphorous and organic matter to vegetation succession on the Loess Plateauof China. Journal Arid Land, 7(2), 216-223. https://doi.org/10.1007/s40333-014-0043-3spa
dc.relation.referencesDangi, S., Stahl, P., Wick, A. Ingram, L. & Buyer, J. (2011). Soil microbial community recovery in reclaimed soils on a surface coal mine site. Soil Science Society of America Journal, 76, 915-924. https://doi.org/10.2136/sssaj2011.0288spa
dc.relation.referencesFernández, I., Morales, N., Olivares, L., Salvatierra, J., Gómez, M. & Montenegro, G. (2010). Restauración ecológica para ecosistemas nativos afectados por incendios forestales. Santiago de Chile: Gráfica Lom y Concha y Toro 25. 162 p.spa
dc.relation.referencesFu, X., Shao, M. & Wei, X. (2010). Soil organic carbon and total nitrogen as affected by vegetation types in Northern Loess Plateau of China. Geoderma, 155, 31-35. https://doi.org/10.1016/j.geoderma.2009.11.020spa
dc.relation.referencesHelgason, B., Konschunh, H., Bedardrd, A. & Vanderbygaart, A. (2014). Microbial distribution in an eroded landscape: Buried A horizons support abundant and unique communities. Agriculture Ecosystems and Environment, 196, 94-102. https://doi.org/10.1016/j.agee.2014.06.029spa
dc.relation.referencesHorwitz, W. (2000). Official Methods of Analysis of AOAC International. Gaithersburg, MA: AOAC International. 771 p.spa
dc.relation.referencesHou, F., Xiao, J. & Nan, Z. (2002). Eco-restoration of abandoned farmland in the Loess Plateau. China. Chinese Journal of Applied Ecology, 13(8), 923-929.spa
dc.relation.referencesHu, C., Fu, B. & Jin, T. (2009). Effects of vegetation restoration on soil microbial biomass carbon and nitrogen in hilly areas of Loess Plateau. Chinese Journal of Applied Ecology, 20(1), 45-50.spa
dc.relation.referencesHuxel, G. & Hastings, A. (1999). Habitat loss, fragmentation and restoration. Restoration Ecology, 7, 309-315. https://doi.org/10.1046/j.1526-100X.1999.72024.xspa
dc.relation.referencesLi, X., Kong, D. & Tan, H. (2007). Changes in soil and vegetation following stabilization of dunes in the southeastern fringe of the Tengger Desert, China. Plant and Soil, 300, 221-231. https://doi.org/10.1007/s11104-007-9407-1spa
dc.relation.referencesLinares, N. (1999). Efecto de las bacterias solubilizadoras de fósforo en la producción del cultivo de arroz (Trabajo de pregrado, Facultad de Agronomía). Bogotá: Universidad Nacional de Colombia. 70 p.spa
dc.relation.referencesMatsumoto, L., Martines, A., Avanzi, M., Albino, U., Brazil, C., Saridakis, D., Rampazo, L., Zangaro, W. & Andrade, G. (2005). Interactions among functional groups in the cycling of carbon, nitrogen and phosphorus in the rhizosphere of three successional species of tropical woody trees. Applied soil Ecology, 28, 57-65. https://doi.org/10.1016/j.apsoil.2004.06.008spa
dc.relation.referencesMinitab Inc. (2003). MINITAB Statistical Software, Release 14 for Windows, State College, Pennsylvania. MINITAB® is a registered trademark of Minitab Inc,spa
dc.relation.referencesMummey, D., Stahl, P. & Buyer, J. (2002). Soil microbiological and physiochemical properties 20 years after surface mine reclamation: Comparative spatial analysis of reclaimed and undisturbed ecosystems. Soil Biology Biochemistry, 34, 1717-1725. https://doi.org/10.1016/S0038-0717(02)00158-Xspa
dc.relation.referencesNautiyal, C. (1999). An efficient microbiological growth medium for screening phosphate-solubilizing microorganisms. FEMS Microbiology Letters, 170, 265-270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.xspa
dc.relation.referencesSamira, M., Mohammad, R. & Gholamreza, G. (2011). Carboxymethyl-cellulase and filter-paperase activity of new strains isolated form Persian Gulf. Microbiology Journal, 1(1), 8-16. https://doi.org/10.3923/mj.2011.8.16spa
dc.relation.referencesSivila de Cary, R. & Angulo, W. (2006). Efecto del descanso agrícola sobre la microbiota del suelo (Patarani - Altiplano Central boliviano). Ecología en Bolivia, 41(3), 103-115.spa
dc.relation.referencesSystat Software Inc. (SSI). (2003 -2013). SigmaPlot Versión 10.0. [software de computadora en CD-ROM]. United States of America. Recuperado de: http://www.sigmaplot.co.uk/products/sigmaplot/sigmaplot-details.phpspa
dc.relation.referencesTorres, M. & Lizarazo, L. (2006). Evaluación de grupos funcionales del ciclo del C, N y P y actividad de la fosfatasa ácida en dos suelos agrícolas del departamento de Boyacá. Agronomía Colombiana, 24(2), 317-325.spa
dc.relation.referencesUnited States Department of Agriculture (Usda). (1999). Guía para la evaluación de la calidad y salud del suelo. Estados Unidos: Usda. 82 p.spa
dc.relation.referencesValero, N. (2003). Potencial biofertilizante de bacterias diazotróficas y solubilizadoras de fosfato asociadas al cultivo de arroz (Oriza sativa) (Trabajo de Maestría, Ciencias–Microbiología). Bogotá: Universidad Nacional de Colombia. 92 p.spa
dc.relation.referencesVan der Heijden, M., Bardgett, R., Van Straalen, N. (2008). The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11, 296-310. https://doi.org/10.1111/j.1461-0248.2007.01139.xspa
dc.relation.referencesVanegas, J., Landazabal, J., Melgarejo, L., Beltrán, M., Uribe, D. (2013). Structural and functional characterization of the microbial communities associated with the upland and irrigated rice rhizospheres in a neotropical Colombian savannah. European Journal of Soil Biology, 55, 1-8. https://doi.org/10.1016/j.ejsobi.2012.10.008spa
dc.relation.referencesVargas, O. (Ed.). (2007). Guía metodológica para la restauración ecológica del bosque altoandino. Bogotá: Convenio Interinstitucional Acueducto de Bogotá, Jardín Botánico, Secretaría Distrital de Ambiente, Grupo de Restauración Ecológica Universidad Nacional de Colombia. 194 p.spa
dc.relation.referencesWalkley, A. & Black, I. (1934). An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37,29-38. https://doi.org/10.1097/00010694-193401000-00003spa
dc.relation.referencesWen X, Zhi Yang, Ch., Jiao Chena, Y., Min Chena, L., Zhu Zhanga, D., Meia, L., Tao shia, Y. & Bo zhanga, H. (2012). Changes in non-symbiotic nitrogen-fixing bacteria inhabiting rhizosphere soils of an invasive plant Ageratina adenophora. Applied Soil Ecology, 54, 32-38. https://doi.org/10.1016/j.apsoil.2011.10.021spa
dc.relation.referencesWen, Z., Jiao, F., Liu, B. (2005). Natural vegetation restoration and soil nutrient dynamic of abandoned farmlands in forest-steppe zone on Loess Plateau. Chinese Journal of Applied ecology, 16(11), 2025-2029.spa
dc.relation.referencesZhang, C., Liu, G. & Xue S. (2012). Rhizosphere soil microbial properties on abandoned croplands in the Loess Plateau, China during vegetation succession. European Journal of Soil Biology, 50,127-136. https://doi.org/10.1016/j.ejsobi.2012.01.002spa
dc.relation.referencesZimmermann, M., Leifeld, J. & Fuhrer, J. (2007). Quantifying soil organic fractions by infrared-spectroscopy. Soil Biology & Biochemistry, 39,224-231. https://doi.org/10.1016/j.soilbio.2006.07.010spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.relation.citationvolume20spa
dc.relation.citationissue2spa
dc.relation.citationeditionNúm. 2 , Año 2017 : Julio-Diciembrespa
dc.relation.ispartofjournalColombia forestalspa
dc.identifier.eissn2256-201X
dc.identifier.urlhttps://doi.org/10.14483/udistrital.jour.colomb.for.2017.2.a05
dc.relation.citationstartpage159
dc.relation.citationendpage170
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/10400/12769
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/10400/12863
dc.type.contentTextspa
dspace.entity.typePublicationspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Colombia Forestal - 2017
Excepto si se señala otra cosa, la licencia del ítem se describe como Colombia Forestal - 2017