Mostrar el registro sencillo del ítem

dc.contributor.authorAlzate Velásquez, Diego Fernandospa
dc.contributor.authorAraujo Carrillo, Gustavo Alfonsospa
dc.contributor.authorRojas barbosa, Edwin Oswaldospa
dc.contributor.authorGomez Latorre, Douglas Andresspa
dc.contributor.authorMartínez Maldonado, Fabio Ernestospa
dc.date.accessioned2018-01-01 00:00:00
dc.date.accessioned2023-09-19T21:10:09Z
dc.date.available2018-01-01 00:00:00
dc.date.available2023-09-19T21:10:09Z
dc.date.issued2018-01-01
dc.identifier.issn0120-0739
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/44441
dc.description.abstractSe utilizó el modelo regionalizado de lluvia Regionalisierte Niederschlage (Regnie) para interpolar la lluvia y temperatura media del aire de las regiones Andina, Caribe y Pacífica de Colombia. Este modelo integró los datos de la pendiente y exposición del terreno obtenidos del modelo digital de elevación, así como los promedios climatológicos de 1440 series de precipitación y 258 series de temperatura registradas en igual número de estaciones meteorológicas de superficie para cada variable. Se establecieron los modelos de regresión lineal múltiple de la precipitación media anual y temperatura media anual del aire, además se utilizaron herramientas de geoprocesamiento para la generación de las superficies interpoladas. Los estadísticos de prueba de las superficies Regnie fueron similares a los obtenidos con interpolaciones con los métodos Spline e IDW para precipitación (coeficiente de determinación 0.81 y error medio de 55.6 mm) y mejores para la temperatura media (coeficiente de determinación 0.99 y error medio de 0.02°C). spa
dc.description.abstractA regionalized rain interpolation model: Regionalisierte Niederschlage (REGNIE) was implemented to interpolate rain and average air temperature for the Andean, Caribbean and Pacific Regions in Colombia. This model integrated terrain slope and aspect obtained  from the digital elevation model and the climatological average of 1440 precipitation time series and 259 temperature time series registered in the same number of weather stations for each variable. Multiple linear regression models of annual rainfall and annual average air temperature were obtained according to the model and geoprocessing tools were used for the generation of interpolated surfaces. Statistical results of REGNIE surfaces were similar to those obtained with SPLINE and IDW methods for precipitation (determination coefficient of 0.81 and 55.6 mm mean error) and better for average mean temperature (coefficient of determination 0.99 and average error of 0.02 °C).eng
dc.format.mimetypeapplication/pdfspa
dc.format.mimetypetext/htmlspa
dc.format.mimetypeapplication/xmlspa
dc.language.isospaspa
dc.publisherUniversidad Distrital Francisco José de Caldasspa
dc.rightsColombia Forestal - 2018spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttps://revistas.udistrital.edu.co/index.php/colfor/article/view/11601spa
dc.subjectspatial analysiseng
dc.subjectR languageeng
dc.subjectDEMeng
dc.subjectdeterministic methodseng
dc.subjectrainfalleng
dc.subjectair temperatureeng
dc.subjectanálisis espacialspa
dc.subjectlenguaje Rspa
dc.subjectMDEspa
dc.subjectmétodos determinísticosspa
dc.subjectprecipitaciónspa
dc.subjecttemperatura del airespa
dc.titleInterpolacion Regnie para lluvia y temperatura en las regiones andina, caribe y pacífica de Colombiaspa
dc.typeArtículo de revistaspa
dc.identifier.doi10.14483/2256201X.11601
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.localJournal articleeng
dc.title.translatedREGNIE interpolation for rain and temperature in the andean, caribbean and pacific regions of Colombiaeng
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.relation.referencesAbteilung Hydrometeorologie. (2013). Regnie (Regionalisierte Niederschläge): Verfahrensbeschreibung & Nutzeranleitung. Offenbach: Deutscher Wetterdienst - DWD. 9 p.spa
dc.relation.referencesAgnew, M., & Palutikof, J. (2000). GIS-based construction of baseline climatologies for the Mediterranean using terrain variables. Climate Research, 14, 115-127. DOI: https://doi.org/10.3354/cr014115spa
dc.relation.referencesAlexandersson, H. (1986). A homogeneity test applied to precipitation data. Journal of Climatology, 6, 661-675. DOI: https://doi.org/10.1002/joc.3370060607spa
dc.relation.referencesBellprat, O., Kotlarski, S., Lüthi, D., & Schär, C. (2012). Exploring perturbed physics ensembles in a regional climate model. Journal of Climate, 25, 4582-4599. DOI: https://doi.org/10.1175/JCLI-D-11-00275.1spa
dc.relation.referencesBerg, P., Mosoley, C., & Haerter, J. (2013). Strong increase in convective precipitation in response to higher temperatures. Nature Geoscience, 6, 181-183. DOI: https://doi.org/10.1038/ngeo1731spa
dc.relation.referencesBuishand, T., Beersma, J., Sluiter, R., & Kroon, T. (2008). Definitiestudie rasterdata meteorologie. De Bilt, KNMI / RWS Waterdienst. Intern rapport. 28 p.spa
dc.relation.referencesBustamante, J. (2003). Cartografía predictiva de variables climatológicas: Comparación de distintos modelos de interpolación de la temperatura en España peninsular. Graellsia, 2-3, 359-376. DOI: https://doi.org/10.3989/graellsia.2003.v59.i2-3.252spa
dc.relation.referencesCuadrat, J., & Vicente, S. (2008). Características espaciales del clima en La Rioja modelizadas a partir de sistemas de información geográfica y técnicas de regresión lineal. Zubía Monográfico, 20, 119-142.spa
dc.relation.referencesDirks, K., Hay, J., Stow, C., & Harris, D. (1998). Highresolution studies of rainfall on Norfolk Island: Part II: Interpolation of rainfall data. Journal of Hydrology, 208, 187-193. DOI: https://doi.org/10.1016/S0022-1694(98)00155-3spa
dc.relation.referencesGuijarro, J.A. (2014). Quality Control and Homogenization of Climatological Series. En S. Eslamian (ed.). Handbook of Engineering Hydrology, vol. I: Fundamentals and Applications, cap. 24. EE. UU.: Francis and Taylor, CRC Group. DOI: https://doi.org/10.1201/b15625-25spa
dc.relation.referencesGiraldo, R. (2002). Introducción a la geoestadística: teoría y aplicación. Bogotá, D.C.: Universidad Nacional de Colombia. Facultad de Ciencias. Departamento de Estadística. 94 p.spa
dc.relation.referencesGrasselt, R., Schüttemeyer, D., Warrach-Sagi, K., Ament, F., & Simmer, C. (2008). Validation of TERRA-ML with discharge measurements. Meteorologische Zeitschrift, 17(6), 763-773. DOI: https://doi.org/10.1127/0941-2948/2008/0334spa
dc.relation.referencesHartkamp, A., De Beurs, K., Stein, A., & White, J. (1999). Interpolation Techniques for Climate Variables. CIMMYT. NRG-GIS Series, 99-01, 1-26.spa
dc.relation.referencesHengl, T. (2009). A practical guide to geostatistical mapping. Luxembourg: Office for Official Publications of the European Communities. 290 p.spa
dc.relation.referencesHengl, T., & Reuter, H.I. (2008). Geomorphometry. Concepts, software, applications. AE Amsterdam: Elsevier. 796 p.spa
dc.relation.referencesHengl, T., Gruber, S., & Shrestha, D.P. (2003). Digital Terrain Analysis in Ilwis. Lecture notes and user guide. Enschede: International Institute for Geo-Information Science and Earth Observation. 56 p.spa
dc.relation.referencesHewitson, B., & Crane, R. (2005). Gridded area-averaged daily precipitation via conditional interpolation. Journal of Climate, 18, 41-57. DOI: https://doi.org/10.1175/JCLI3246.1spa
dc.relation.referencesHofstra, N., Haylock, M., New, M., Jones, P, & Frei C. (2008). Comparison of six methods for the interpolation of daily, European climate data. Journal of Geophysical Research, 113, D21110. DOI: https://doi.org/10.1029/2008JD010100spa
dc.relation.referencesInstituto de Hidrología, Meteorología y Estudios Ambientales (Ideam). (2005). Atlas climatológico de Colombia. Bogotá D.C.: Ideam. 219 p.spa
dc.relation.referencesKotlarski, S., Hagemann, S., Krahe, P., Podzun, R., & Jacob, D. (2012). The Elbe river flooding 2002 as seen by an extended regional climate model. Journal of Hydrologic, 472-473, 169-183. DOI: https://doi.org/10.1016/j.jhydrol.2012.09.020spa
dc.relation.referencesMarquinez, J., Lastra, J., & García, P. (2003). Estimation models for precipitation in mountainous regions: the use of GIS and multivariate analysis. Journal of Hydrology, 270, 1-11. DOI: https://doi.org/10.1016/S0022-1694(02)00110-5spa
dc.relation.referencesMcCuen, R. (1998). Hydrologic Analysis and Design. Englewood Cliffs, New Jersey: Prentice-Hall. 814 p.spa
dc.relation.referencesMejía, F., Mesa, O., Poveda, G., Vélez, J., Hoyos, C., Mantilla, R., Barco, J., Cuartas, A., Montoya, M., & Botero, B. (1999). Distribución espacial y ciclos anual y semianual de la precipitación en Colombia. DYNA, 127, 7-26.spa
dc.relation.referencesMesa, O., Poveda, G., & Carvajal, L. (1997). Introducción al clima de Colombia. Bogotá D.C.: Universidad Nacional de Colombia-sede Medellín. 390 p.spa
dc.relation.referencesMontoya, G., Eslava, J., Calderon, A., & Vega, F. (2000). Implementación del método de Gandin para interpolar datos de precipitación en Colombia. Meteorología Colombiana, 1, 25-30.spa
dc.relation.referencesNinyerola, M., Pons, X., & Roure, J. (2000). A methodological approach of climatological modelling of air temperature and precipitation through GIS techniques. International Journal of Climatology, 20, 1823-1841. DOI: https://doi.org/10.1002/1097-0088(20001130)20:14<1823::AID-JOC566>3.0.CO;2-Bspa
dc.relation.referencesOlaya. V. (2011). Sistemas de información geográfica. Versión 1.0. Creative Commons Atribución. 877 p.spa
dc.relation.referencesPhotiadou, C., Weerts, A., Van Den, B., & Hurk, J. (2011). Evaluation of two precipitation data sets for the rhine river using streamflow simulations. Hydrology and Earth System Science, 15, 3355-3366. DOI: https://doi.org/10.5194/hess-15-3355-2011spa
dc.relation.referencesR Development Core Team. (2008). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Recuperado de: http://www.R-project.orgspa
dc.relation.referencesRauthe, M., Steiner, H., U., Riediger, A., Mazurkiewicz, A., & Gratzki, A. (2013). A Central European precipitacion climatology - Part I: Generation and validation of a high-resolution gridded daily data set (HYRAS). Meteorologische Zeitschrift, 22(3), 235-256. DOI: https://doi.org/10.1127/0941-2948/2013/0436spa
dc.relation.referencesSaz, M., Serrano, R., De Luis, M., & Longares, L. (2010). Comparación de métodos de interpolación y de regresión para la cartografía de temperaturas máximas y mínimas absolutas: el caso de Navarra (norte de España) en 2009. En F. Fernández-García, E. Gallan-Gallego & R. Cañada-Torrecilla (eds.). Clima, ciudad y ecosistemas (pp. 473-484). Madrid: Publicaciones de la Asociación Española de Climatología.spa
dc.relation.referencesSchwitalla, T., Bauer, H.S., Wulfmeyer, V., & Zängl, G. (2008). Systematic errors of QPF in low-mountain regions as revealed by MM5 simulations. Meteorologische Zeitschrift, 17(6), 903-919. DOI: https://doi.org/10.1127/0941-2948/2008/0338spa
dc.relation.referencesShepard, D. (1968). A two-dimensional interpolation function for irregularly-space data. En R. B. S. Blue & A.M. Rosenberg (eds.). Proceedings of the 1968 ACM National Conference (pp. 517-524). New York: ACM Press. DOI: https://doi.org/10.1145/800186.810616spa
dc.relation.referencesSluiter, R. (2009). Interpolation methods for climate data - Literature review. De Bilt: KNMI. 24 p.spa
dc.relation.referencesSoenario, I., Plieger, M., & Sluiter, R. (2010). Optimization of rainfall interpolation. De Bilt: KNMI. 31 p.spa
dc.relation.referencesVargas, G., Ibáñez, L., & Arteaga, R. (2015). Development, classification and trends in rainfall-runoff modeling. Ingeniería Agrícola y Biosistemas, 7(1), 5-21. DOI: https://doi.org/10.5154/r.inagbi.2015.03.002spa
dc.relation.referencesWagner, P., Fiener, P., Wilken, F., Kumar, S., & Schneider, K. (2012). Comparison and evaluation of spatial interpolation schemes for daily rainfall in data scarce regions. Journal of Hydrology, 464-465, 388-400. DOI: https://doi.org/10.1016/j.jhydrol.2012.07.026spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.relation.citationvolume21spa
dc.relation.citationissue1spa
dc.relation.citationeditionNúm. 1 , Año 2018 : Enero-Juniospa
dc.relation.ispartofjournalColombia forestalspa
dc.identifier.eissn2256-201X
dc.identifier.urlhttps://doi.org/10.14483/2256201X.11601
dc.relation.citationstartpage102
dc.relation.citationendpage118
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/11601/13323
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/11601/13505
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/11601/13491
dc.type.contentTextspa
dspace.entity.typePublicationspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Colombia Forestal - 2018
Excepto si se señala otra cosa, la licencia del ítem se describe como Colombia Forestal - 2018