Mostrar el registro sencillo del ítem

dc.contributor.authorVasquez Valderrama, Maribel Yeseniaspa
dc.contributor.authorSolorza-Bejarano, Jairospa
dc.date.accessioned2018-01-01 00:00:00
dc.date.accessioned2023-09-19T21:10:10Z
dc.date.available2018-01-01 00:00:00
dc.date.available2023-09-19T21:10:10Z
dc.date.issued2018-01-01
dc.identifier.issn0120-0739
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/44443
dc.description.abstractLos ecosistemas de montaña están sometidos a diversos factores de perturbación que requieren el desarrollo de procesos de restauración ecológica, orientados a su recuperación estructural y funcional. En este estudio se analizaron los atributos funcionales de las especies vegetales de ocho especies vegetales incorporadas en áreas piloto de investigación en restauración ecológica presentes en Bogotá. Se registró el área foliar (AF), área foliar específica (AFE), contenido foliar de materia seca (CFMS), densidad de madera (dB), altura máxima (Hmax) y hábito de crecimiento de Ageratina aristei, Abatia parviflora, Baccharis latifolia, Myrcianthes leucoxyla, Solanum oblongifolium, Vallea stipularis, Viburnum triphyllum y Xylosma spiculifera. Se encontraron tres grupos funcionales, los cuales presentan características de especies exclusivamente adquisitivas o adquisitiva-conservativa, lo que sugiere diferentes mecanismo y estrategias y mecanismos de adaptación a las condiciones de recuperación de las áreas perturbadas.spa
dc.description.abstractMountain ecosystems are subject to various factors of disturbance, therefore different ecological restoration processes should be developed for achieving their structural and functional recovery. In this study, we analyzed the functional attributes of eight plant species used in ecological restoration research areas in Bogotá. Leaf area (AF), leaf area of dry matter (CFMS), wood density (dB), maximum height (Hmax) and growth habit of Ageratina aristei, Abatia parviflora, Baccharis latifolia, Myrcianthes leucoxyla, Solanum oblongifolium, Vallea stipularis, Viburnum triphyllum and Xylosma spiculifera were quantified. Three plant functional groups were found with exclusive characteristics of acquisitive or acquisitive - conservative species, suggesting different mechanisms and strategies of adaptation for the recovery of disturbed areas.eng
dc.format.mimetypeapplication/pdfspa
dc.format.mimetypetext/htmlspa
dc.format.mimetypeapplication/xmlspa
dc.language.isospaspa
dc.publisherUniversidad Distrital Francisco José de Caldasspa
dc.rightsColombia Forestal - 2018spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttps://revistas.udistrital.edu.co/index.php/colfor/article/view/11730spa
dc.subjectaltura máximaspa
dc.subjectárea foliar específicaspa
dc.subjectatributo funcionalspa
dc.subjectcontenido foliarspa
dc.subjectdensidad de maderaspa
dc.subjectmaximum heighteng
dc.subjectspecific foliar areaeng
dc.subjectfunctional attributeeng
dc.subjectleaf contenteng
dc.subjectwood densityeng
dc.titleAgrupación funcional de especies vegetales para la restauración ecológica de ecosistemas de montaña, Bogotá, Colombiaspa
dc.typeArtículo de revistaspa
dc.identifier.doi10.14483/2256201X.11730
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.localJournal articleeng
dc.title.translatedFunctional grouping of plant species for the ecological restoration of mountain ecosystems, Bogotá, Colombiaeng
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.relation.referencesAckerly, D., Knight, C., Weiss, S., Barton, K., & Starmer, K. (2002). Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: Contrasting patterns in species level and community level analyses. Oecologia, 130(3), 449-457. DOI: https://doi.org/10.1007/s004420100805 Ackerly, D. (2009). Conservatism and diversification of plant functional traits: Evolutionary rates versus phylogenetic signal. Proceedings of the National Academy of Sciences of the United States of America, 106,19699-19706. DOI: https://doi.org/10.1073/pnas.0901635106 Barrera-Cataño, J., & Valdés-López, C. (2007). Herramientas para abordar la restauración ecológica de áreas disturbadas en Colombia. Universitas Scientiarum, 12(2), 11-24. Barrera-Cataño, J., Contreras-Rodríguez, S., Garzón-Yepes, N., Moreno-Cárdenas, A., & Montoya-Villarreal, S. (2010). Manual para la restauración ecológica de los ecosistemas disturbados del Distrito Capital. Bogotá: Secretaría Distrital de Ambiente-Pontificia Universidad Javeriana. 403 p. Benayas, R., Newton, A., Diaz, A., & Bullock, J. (2009). Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis. Science, 325(5944), 1121-1124. DOI: https://doi.org/10.1126/science.1172460 Castellanos-Castro, C., & Bonilla, M. (2011). Grupos funcionales de plantas con potencial uso para la restauración en bordes de avance de un bosque altoandino. Acta Biológica Colombiana, 16(1), 153-174. Casanoves, F., Pla, L., & Rienzo, J. (eds.). (2011). Valoración y análisis de la diversidad funcional y su relación con los servicios ecosistémicos. Turrialba, Costa Rica: Centro Agronómico Tropical de Investigación y Enseñanza (Catie). 834 p. Chapin F. (1993). Functional role of growth forms in ecosystem and global processes. In Scaling Physiological Processes: Leaf to Globe, 287-312. DOI: https://doi.org/10.1016/B978-0-12-233440-5.50024-5 Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N., & Zanne, A. (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12(4), 351-366. DOI: https://doi.org/10.1111/j.1461-0248.2009.01285.x Corneliessen, J., Lavorel, S., Garnier, E., Díaz, S., Buchmann, N., Gurvich, D., Reich, P., Ter Steege, H., Morgan, H., Heijden, M., Pausas, J., & Poorter, H. (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380. DOI: https://doi.org/10.1071/BT02124 Díaz, S., Kattge, J., Cornelissen, J., Wright, I., Lavorel, S., Dray, S., & Garnier, E. (2016). The global spectrum of plant form and function. Nature, 529(7585), 167-171. DOI: https://doi.org/10.1038/nature16489 Díaz, S., Purvis, A., Cornelissen, J., Mace, G., Donoghue, M., Ewers, R., & Jordano, P. (2013). Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecology and Evolution, 3(9), 2958-2975. DOI: https://doi.org/10.1002/ece3.601 Duffy, J., France, K., Mclntyre, P., Thebault, E., & Loreau, M. (2007). The functional role of biodiversity in ecosystems: incorporating trophic complexity. Ecology Letters. 10, 522-538. DOI: https://doi.org/10.1111/j.1461-0248.2007.01037.x Flynn, D., Mirotchnick, N., Jain, M., Palmer, M., & Naeem, S. (2011). Functional and phylogenetic diversity as predictors of biodiversity--ecosystem-function relationships. Ecology, 92(8), 1573-1581. DOI: https://doi.org/10.1890/10-1245.1 Gelder, H., Poorter, L., & Sterck, F. (2006). Wood mechanics, allometry, and life-history variation in a tropical rain forest tree community. The New phytologist, 171(2), 367-78. DOI: https://doi.org/10.1111/j.1469-8137.2006.01757.x Gulías, J., Flexas, J., Mus, M., Cifre, J., Lefi, E., & Medrano, H. (2003). Relationship between maximum leaf photosynthesis, nitrogen content and specific leaf area in Balearic endemic and non-endemic Mediterranean species. Annals of Botany, 92(2), 215-222. DOI: https://doi.org/10.1093/aob/mcg123 Hacke, U., Sperry, J., Pockman, W., Davis, S., & Mc Culloh, K. (2001). Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia, 126(4), 457-461. DOI: https://doi.org/10.1007/s004420100628 Hawkins C., & Macmahon, J. (1989). Guilds: the multiple meanings of a concept. Annual Review of Entomology, 34, 423-451. DOI: https://doi.org/10.1146/annurev.en.34.010189.002231 Hodgson, J., Montserrat-M, G., Charles, M., Jones, G., Wilson, P., Shipley, B., & Sharafi, M. (2011). Is leaf dry matter content a better predictor of soil fertility than specific leaf area? Annals of Botany, 108(7), 1337-1345. DOI: https://doi.org/10.1093/aob/mcr225 King, D., Davies, S., Nur Supardi, M., & Tan, S. (2005). Tree growth is related to light interception and wood density in two mixed dipterocarp forests of Malaysia. Functional Ecology, 19(3), 445-453. DOI: https://doi.org/10.1111/j.1365-2435.2005.00982.x Kunstler, G., Falster, D., Coomes, D., Hui, F., Kooyman, R., Laughlin, D., Poorter, L. (2015). Plant functional traits have globally consistent effects on competition. Nature, 529(7585), 1-15. DOI: https://doi.org/10.1038/nature16476 Leps, J., Bello, F., Lavorel, S., & Berman, S. (2006). Quantifying and interpreting functional diversity of natural communities: practical considerations matter. Preslia, 78, 481-501. Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J., Hector, A., & Hooper, D. (2001). Biodiversity and ecosystem functioning: current knowledge and future challenges. Science, 294(5543), 804-8. DOI: https://doi.org/10.1126/science.1064088 Lohbeck, M., Lebrija-Trejos, E., Martínez-Ramos, M., Meave, J., Poorter L., & Bongers, F. (2015). Functional trait strategies of trees in dry and wet tropical forests are similar but differ in their consequences for succession. PloS one, 10(4), e0123741. DOI: https://doi.org/10.1371/journal.pone.0123741 Lüscher, A., Stäheli, B., Beaun, R., & Nösberger, J. (2001). Leaf area, competition with grass, and clover cultivar: Key factors to successful overwintering and fast regrowth of white clover (Trifolium repens L.) in spring. Annals of Botany, 88, 725-735. DOI: https://doi.org/10.1006/anbo.2001.1509 Maherali, H., & Klironomos, J. (2007). Influence of phylogeny on fungal community assembly and ecosystem functioning. Science, 316, 1746-1748. DOI: https://doi.org/10.1126/science.1143082 Marenco, R., Antezana-Vera, S., & Nascimento, H. (2009). Relationship between specific leaf area, leaf thickness, leaf water content and SPAD-502 readings in six Amazonian tree species. Photosynthetica, 47(2), 184-190. DOI: https://doi.org/10.1007/s11099-009-0031-6 Martín-López, B., González, J., Díaz, S., Castro, I., & García-Llorente, M. (2007). Biodiversidad y bienestar humano: el papel de la diversidad funcional. Ecosistemas, 16(3), 69-80. Mayer, P. (2006). Biodiversity - The appreciation of different thought styles and values helps to clarify the term. Restoration Ecology, 14(1), 105-111. DOI: https://doi.org/10.1111/j.1526-100X.2006.00111.x Melo-Cruz, O., Rodríguez-Santos, N., & Rojas-Ramírez, F. (2012). Patrones de arquitectura foliar asociados al crecimiento funcional de cinco especies leñosas nativas de la cordillera oriental utilizadas en restauración ecológica en la sabana de Bogotá. Colombia Forestal, 15(1), 119-130. DOI: https://doi.org/10.14483/udistrital.jour.colomb.for.2012.1.a04 Moore, J. (2001). Diversity taxonomic versus Functional. University of Northern Colorado. Encyclopedia of Biodiversity. vol II. Colorado, EE. UU. p 205-2015. DOI: https://doi.org/10.1016/B0-12-226865-2/00078-X Murcia, C., & Guaringuata, M. (2014). La restauración ecológica en Colombia: tendencias, necesidades y oportunidades. Occasional Paper. Bogor, Indonesia: Centro para la investigación Forestal Internacional (Cifor). 107 p. Ostertag, R., Warman, L., Cordell, S., & Vitousek, P. (2015). Using plant functional traits to restore Hawaiian rainforest. Journal of Applied Ecology, 52(4), 805-809. DOI: https://doi.org/10.1111/1365-2664.12413 Poorter, H., & De Jong, R. (1999). A comparison of specific leaf area, chemical composition and leaf construction costs of field plants from 15 habitats differing in productivity. New Phytologist, 143(1), 163-176. DOI: https://doi.org/10.1046/j.1469-8137.1999.00428.x Puertas, P., Guevara, C., & Espinoza, M. (2013). Manual de transformación de maderas.. Lima: Organización Internacional de Maderas (OIMT). 122 p. Pickup, M., Westoby, M., & Basden, A. (2005). Dry mass costs of deploying leaf area in relation to leaf size. Functional Ecology, 19(1), 88-97. DOI: https://doi.org/10.1111/j.0269-8463.2005.00927.x Reich, P. (2014). The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. Journal of Ecology, 102, 275-301. DOI: https://doi.org/10.1111/1365-2745.12211 R Core Team. (2016). R: A language and environment for statistical computing. R Foundation for statistical Computing, Vienna, Austria. Recuperado de: https://www.R-project.org/ Salgado-Negret, B. (ed). (2015). La ecología funcional como aproximación al estudio, manejo y conservación de la biodiversidad: protocolos y aplicaciones. Bogotá: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. 236 p. Schneider, C., Rasband, W., & Eliceiri, K. (2012). ImageJ. “NIH Image to ImageJ: 25 years of image analysis”. Nature methods, 9(7), 671-675. DOI: https://doi.org/10.1038/nmeth.2089 Solorza, J. (2016). Investigación en áreas piloto de restauración ecológica (“Apires”). Scientific journal, Jardín Botánico de Bogotá José Celestino Mutis. Bio-Síntesis, 1(1), 5. Squeo, F., Olivares, N., Olivares, S., Pollastri, A., Aguirre, E., Aravena, R., Jorquera, C., & Ehleringer, J. (1999). Grupos funcionales en arbustos desérticos del norte de Chile, definidos sobre la base de las fuentes de agua utilizadas. Gayana Botanica, 56(1), 1-15. The Angiosperm Phylogeny Group. (2009), An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society, 161, 105-121. DOI: https://doi.org/10.1111/j.1095-8339.2009.00996.x Violle, C., Navas, M., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., & Garnier, E. (2007). Let the concept of trait be functional. Oikos, 116, 882-892. DOI: https://doi.org/10.1111/j.0030-1299.2007.15559.x Warnock, R., Valenzuela, J., Trujillo, A., Madriz, P., & Gutiérrez, M. (2006). Área foliar, componentes del área foliar y rendimiento de seis genotipos de Caraota. Agronomía Tropical, 56(1), 21-42. Webb, C., Ackerly, D., & Kembel, S. (2008). Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics, 24, 2098-2100. DOI: https://doi.org/10.1093/bioinformatics/btn358 Wright, I., Reich, P., Westoby, M., Ackerly, D., Baruch, Z., Bongers, F., & Cavender-Bares, J. (2004). The worldwide leaf economics spectrum. Nature, 428(6985), 821-827. DOI: https://doi.org/10.1038/nature02403 Wilson, P., Thompson, K., & Hodgson, J. (1999). Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist, 143(1), 155-162. DOI: https://doi.org/10.1046/j.1469-8137.1999.00427.x Wortley, L., Hero, J., & Howes, M. (2013). Evaluating ecological restoration success: A review of the literature. Restoration Ecology, 21, 537-543. DOI: https://doi.org/10.1111/rec.12028spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.relation.citationvolume21spa
dc.relation.citationissue1spa
dc.relation.citationeditionNúm. 1 , Año 2018 : Enero-Juniospa
dc.relation.ispartofjournalColombia forestalspa
dc.identifier.eissn2256-201X
dc.identifier.urlhttps://doi.org/10.14483/2256201X.11730
dc.relation.citationstartpage5
dc.relation.citationendpage17
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/11730/13312
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/11730/13497
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/11730/13482
dc.type.contentTextspa
dspace.entity.typePublicationspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Colombia Forestal - 2018
Excepto si se señala otra cosa, la licencia del ítem se describe como Colombia Forestal - 2018