Mostrar el registro sencillo del ítem
Extractivos del duramen de especies latífoliadas como preservantes en la madera de <i>Pinus caribaea</i>
dc.contributor.author | Velasquez Gil, Jesus Enrique | spa |
dc.contributor.author | Rojas, Luis | spa |
dc.contributor.author | Encinas, Osvaldo | spa |
dc.date.accessioned | 2019-07-01 00:00:00 | |
dc.date.accessioned | 2023-09-19T21:10:18Z | |
dc.date.available | 2019-07-01 00:00:00 | |
dc.date.available | 2023-09-19T21:10:18Z | |
dc.date.issued | 2019-07-01 | |
dc.identifier.issn | 0120-0739 | |
dc.identifier.uri | http://test.repositoriodigital.com:8080/handle/123456789/44461 | |
dc.description.abstract | Se evaluó el comportamiento de los extractos del duramen de tres especies latífoliadas: Handroanthus serratifolius, Centrolobium paraense y Tectona grandis frente a hongos de pudrición marrón y blanca. Se impregnaron bloques de albura de Pinus caribaea con extractos a tres niveles de concentración 0.2 % 1 % y 2 % (p/v). Los bloques tratados se expusieron la acción de Gloeophyllum trabeum y Trametes versicolor durante 16 semanas mediante el método de soil block, normas ASTM D 1413. Las soluciones al 1 % y 2 % fueron más eficientes en disminuir el ataque de los microorganismos de prueba. El extracto de H. serratifolius fue el más efectivo, seguido de C. paraense y con efectos más sutiles pero efectivos el extracto de T. grandis. Los resultados demostraron que los metabolitos secundarios del duramen son una fuente importante de moléculas bioactivas para el tratamiento de maderas menos resistentes como el P. caribaea. | spa |
dc.description.abstract | The performance of heartwood extracts of three durable hardwood species Handroanthus serratifolius Centrolubium paraense y Tectona grandis on brown and white rotter fungi were investigated. Extract dosages were 0.2 % 1 % y 2 % (w/v). Treated blocks were exposed to G. trabeum and T. versicolor attack for 16 weeks by the soil block method using the procedure set out in ASTM D 1413. Only extract solutions of 1 % and 2 % were found more efficient in suppressing fungal attack. The extract of H. serratifolius was more effective, followed by C. paraense and with more subtle but effective effects with T. grandis. The results showed that the secondary metabolites of the heartwood are an important source of bioactive molecules for the treatment of less resistant woods such as P. caribaea. | eng |
dc.format.mimetype | application/pdf | spa |
dc.format.mimetype | text/xml | spa |
dc.language.iso | spa | spa |
dc.publisher | Universidad Distrital Francisco José de Caldas | spa |
dc.rights | Colombia forestal - 2019 | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.source | https://revistas.udistrital.edu.co/index.php/colfor/article/view/14115 | spa |
dc.subject | biopreservant | eng |
dc.subject | wood decay | eng |
dc.subject | Gloeophyllum trabeum | eng |
dc.subject | Trametes versicolor | eng |
dc.subject | biopreservantes | spa |
dc.subject | degradación de madera | spa |
dc.subject | Gloeophyllum trabeum | spa |
dc.subject | Trametes versicolor | spa |
dc.title | Extractivos del duramen de especies latífoliadas como preservantes en la madera de <i>Pinus caribaea</i> | spa |
dc.type | Artículo de revista | spa |
dc.identifier.doi | 10.14483/2256201X.14115 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.type.local | Journal article | eng |
dc.title.translated | Heartwood extractives of hardwood species as preservatives in Pinus caribaea wood | eng |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | spa |
dc.relation.references | Adegeye, A., Ogunsanwo, O. y Olajuyigbe, S. (2009). Antifungal Activities of Heart Wood Extract (HWE) of Teak Tectona grandis Against Two White Rots in Woods of Gmelina arborea and Triplochiton scleroxylon. Academic Journal of Plant Sciences, 2(4), 279-285. https://doi.org/10.4314/ijbcs.v4i3.60453 American Society for Testing and Materials (2005a). Standard Test Method for Wood Preservatives by Laboratory Soil-block Cultures. ASTM D-1413. Annual Book of ASTM Standard, Philadelphia. American Society for Testing and Materials (2005b). Standard Method of Accelerated Laboratory Test of Natural Decay Resistance of Woods. ASTM D-2017. Annual Book of ASTM Standard, Philadelphia. Antwi, C. y Damoah, A. (2010). Investigation of synergistic effects of extracts from Erythrophleum suaveolens, Azadirachta indica, and Chromolaena odorata on the durability of Antiaris toxicaria. International Biodeterioration & Biodegradation, 64(2), 97-103. https://doi.org/10.1016/j.ibiod.2009.08.005 Brocco, V., Paes, J., Gonçalves L., Brazolin S. y Chaves, M. (2017). Potential of teak heartwood extracts as a natural wood preservative. Journal of Cleaner Production, 142(4), 2093-2099. https://doi.org/10.1016/j.jclepro.2016.11.074 Dawson, B. y Morrell, J. (1990). Effects of chemical pretreatment of douglas-fir hearwood on efficacy of potential bioprotection agents. The International Research Group on Wood Preservation. Document Nº IRG/ WP/1440. Doppelreiter, H. y Korioth, M. (1978). Inhibition of development of the subterranean termites Hetertermes indicola and Reticulitermes Flavipes caused by diflubenzuron (DimilinR). Holzforschung, 32, 103-109. https://doi.org/10.1111/j.1439-0418.1981.tb04461.x Eaton, R. y Hale, M. (1993). Wood: Decay, Pests and Protection. Londres: Chapman & Hall. Eller, F., Hay, W., Kirker, G., Mankowski, M. y Sellling, G. (2018). Hexadecyl ammonium chloride amylose inclusion complex to emulsify cedarwood oil and treat wood against termites and wood-decay fungi. International Biodeterioration & Biodegradation, 129(4), 95-101. https://doi.org/10.1016/j.ibiod.2018.01.010 Fengel, D. y Wegener, G. (1984). Wood: Chemistry, Ultrastucture and reactions. Brelín y Nueva York: W. de Gruyter. Goktas, O., Mammadov, R., Duru, M., Ozen, E., Colak, M. y Yilmaz, F. (2007). Introduction and evaluation of the wood preservative potentials of the poisonous Sternbergia candidum extracts. African Journal of Biotechnology, 6(8), 982-986. https://doi.org/10.1016/j.jbiotec.2008.07.1558 Gómez, L., Díaz, M., Velásquez, J., Toro, M., Márquez, A. y Castro, F. (2011). Resistencia natural al deterioro de especies latifoliadas de la Guayana Venezolana. Revista Copérnico, 7(14), 5-11. https://doi.org/10.21829/myb.2006.1211250 González, R., Rosales, M., Rocha, N., Gallegos, J., Moreno, M. y Karchesy, J. (2015). Wood preservation using natural products. Madera y Bosques, 21(Núm. esp.), 63-76. https://doi.org/10.21829/myb.2015.210427 Hillis, W. (1987). Heartwood and tree exudates. Nueva York: Syracuse. Kamdem, D. (1994). Fungal decay resistance of aspen blocks treated with heartwood extracts. Forest Products Journal, 44(1), 30-32. Kokutse, A., Stokes, A., Bailleres, H., Kokou, K. y Baudasse, Ch. (2006) Decay resistance of Togolese teak (Tectona grandis L.f) heartwood and relationship with color. Trees, 20(2), 219–223. https://doi.org/10.1007/s00468-005-0028-0 Kwaśniewska-Sipa, P., Coftaa G. y Nowak, P. (2018). Resistance of fungal growth on Scots pine treated with caffeine. International Biodeterioration & Biodegradation, 132(7), 178-184. https://doi.org/10.1016/j.ibiod.2018.03.007 Mora, N. y Encinas, O. (2001). Evaluación de la durabilidad natural e inducida de Pterocarpus acapulcensis, Tabebuia serratifolia y Pinus caribaea, en condiciones de laboratorio. Revista Forestal Venezolana, 45(1), 23-31. Nagadesi, P. y Arya, A. (2013). Delignification pattern of wood decay by white rot fungi in teak (Tectona grandis L. f.). Journal of the Indian Academy of Wood Science, 10(1), 1-8. https://doi.org/10.1007/s13196-013-0085-8 Onuorah, E. (2000). The wood preservative potentials of heartwood extracts of Milicia excelsa and Erythrophleum suaveolens. Bioresource Technology, 75(2), 171-173. https://doi.org/10.1016/S0960-8524(99)00165-0 Pant, H. y Tripathi, S. (2011). Fumigation oF wood with aluminium phosphide for protection against fungi. Journal of Tropical Forest Science, 23(4), 363-370. Peredo, M. (1993). Preservantes antimancha alternativo al pentaclorofenato de sodio. Chile Forestal. Documento técnico Nº 68. Ramírez, E., Castro, F. y Velásquez, J. (2005). Durabilidad natural de la madera de Baraman (Catostemma commune Sandwith). Revista Copérnico, 2(3), 269-272. Rodrigues, A., Stien, D., Eparvier, V., Espindola, L., Beauchêne, J., Amusant, N., Leménager, N., Baudassé, Ch. y Raguin, L. (2012). The wood preservative potential of long-lasting Amazonian wood extracts. International Biodeterioration & Biodegradation, 75(10), 146-149. https://doi.org/10.1016/j.ibiod.2012.03.014 Sa´R., Argolo, A., Napoleẫo, T., Gomes, F., Santos, N., Melo, C., Albuquerque, A., Xavier, H., Coelho, L., Bieber, L. y Paiva, P. (2009). Antioxidant, Fusarium growth inhibition and Nasutitermes corniger repellent activities of secondary metabolites from Myracrodruon urundeuva heartwood. International Biodeterioration & Biodegradation, 63(4), 470-477. https://doi.org/10.1016/j.ibiod.2009.01.002 Salem, M., Zidan, E., Mansour, M. y Abo, W. (2016). Evaluation of usage three natural extracts applied to three commercial wood species against five common molds. International Biodeterioration & Biodegradation, 110, 206-226. https://doi.org/10.1016/j.ibiod.2016.03.028 Schultz, T. y Nicholas, D. (2000). Naturally durable heartwood: evidence for a proposed dual defensive function of the extractives. Phytochemistry, 54(1), 47-52. https://doi.org/10.1016/S0031-9422(99)00622-6 Schultz, T. y Nicholas, D. (2002). Development of environmentally-benign wood preservatives based on the combination of organic biocides with antioxidants and metal chelators. Phytochemistry, 61(5), 555-560. https://doi.org/10.1016/S0031-9422(02)00267-4 Sen, S., Tascioglu, C. y Tirak, K. (2009). Fixation, leachibility and dacay resistance of Wood treated with some comercial extracts and Wood preservatives salts. International Biodeterioration & Biodegradation, 63(2), 135-141. https://doi.org/10.1016/j.ibiod.2008.07.007 Singh, T. y Singh, A. (2012). A review on natural products as wood protectant. Wood Science and Technology, 46(5), 851-870. https://doi.org/10.1007/s00226-011-0448-5 Sjöström, E. (1981). Wood Chemistry Fundamental and Applications. Orlando, Florida, EE. UU. Suttie, E. y Orsler, R. (1996). The influence of the natural extractives of Opepe (Nauclea diderrichii) and African padauk (Pterocarpus soyauxii) timbers on their durability. The International Research Group on Wood Preservation. Document Nº IRG/ WP/ 96-30098. Syofuna, A., Banana, A. y Nakabonge, G. (2012). Efficiency of natural wood extractives as wood preservatives against termite attack. Maderas Ciencia y Tecnología, 14(2), 155-163. https://doi.org/10.4067/s0718-221x2012000200003 Tascioglu C., Yalcin, M., Sen, S. y Akcay, C. (2013). Antifungal properties of some plant extracts used as wood preservatives. International Biodeterioration & Biodegradation, 85(1), 23-28. https://doi.org/10.1016/j.ibiod.2013.06.004 Thulasidas, P. y Bhat, K. (2007). Chemical extractive compounds determining the brown-rot decay resistance of teakwood. Holz als Roh-und Werkstoff, 65, 121-124. https://doi.org/10.1007/s00107-006-0127-7 Tsoumis, G. (1991). Science and technology of wood. structure, properties, utilization. Nueva York: Van Nostrand Reinhold. Tumen, I., Eller F., Clausen C. y Teel, J. (2013). Antifungal Activity of Heartwood Extracts from Three Juniperus species. BioResources, 8(1), 12-20. https://doi.org/10.15376/biores.8.1.12-20 Velásquez, J., Rojas, L. y Usubillaga, A. (2004). Antifungal activity of naphtoquinone from Tabebuia serratifolia (Vahl. Nicholson). Ciencia, 12(1), 64-69. Velásquez, J., Toro, M., Rojas, L. y Encinas, O. (2006). Actividad antifúngica in vitro de los extractivos naturales de especies latífoliadas de la Guayana Venezolana. Madera y Bosques, 12(1), 51-61. https://doi.org/10.21829/myb.2006.1211250 Yang, D. (2009). Potential utilization of plant and fungal extracts for wood protection. Forest Products Journal, 59(4), 97-103. | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dc.relation.citationvolume | 22 | spa |
dc.relation.citationissue | 2 | spa |
dc.relation.citationedition | Núm. 2 , Año 2019 : Julio-diciembre | spa |
dc.relation.ispartofjournal | Colombia forestal | spa |
dc.identifier.eissn | 2256-201X | |
dc.identifier.url | https://doi.org/10.14483/2256201X.14115 | |
dc.relation.citationstartpage | 44 | |
dc.relation.citationendpage | 54 | |
dc.relation.bitstream | https://revistas.udistrital.edu.co/index.php/colfor/article/download/14115/14903 | |
dc.relation.bitstream | https://revistas.udistrital.edu.co/index.php/colfor/article/download/14115/15106 | |
dc.type.content | Text | spa |
dspace.entity.type | Publication | spa |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Distrital tst 1 [372]