Mostrar el registro sencillo del ítem

dc.contributor.authorRubiano Calderón, Kristian Davidspa
dc.date.accessioned2019-07-01 00:00:00
dc.date.accessioned2023-09-19T21:10:19Z
dc.date.available2019-07-01 00:00:00
dc.date.available2023-09-19T21:10:19Z
dc.date.issued2019-07-01
dc.identifier.issn0120-0739
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/44463
dc.description.abstractLas ciudades presentan características ambientales particulares que dan lugar a fenómenos como las islas de calor. Aunque las coberturas vegetales son fundamentales en la mitigación de estas condiciones adversas, se ha observado que su distribución no es equitativa. Analizar esta distribución y la oferta de servicios ecosistémicos es importante para la planificación de las ciudades. Por tal razón, se analizó la distribución de la capacidad de regulación térmica de las coberturas vegetales públicas de la ciudad de Bogotá, usando la cobertura arbórea y el verdor como variables proxy, mediante análisis geoestadístico y metodologías propias de los sistemas de información geográfica y la teledetección. El verdor de los parques aumentó con su tamaño y estrato socioeconómico, la cobertura arbórea incrementó en los estratos más altos. Se identificaron coldspots y hotspots de estas variables y del potencial de regulación térmica en los sectores con estratos más bajos y más altos respectivamente.spa
dc.description.abstractCities show particular environmental characteristics that give rise to phenomena such as heat islands. Although vegetation covers are key in mitigating these adverse conditions, their distribution has been found to be inequitable. Analyzing this distribution and the supply of ecosystem services is important for the city planning . For this reason, the distribution of the thermal regulation capacity of the public vegetation covers of Bogotá city was analyzed, using tree coverage and greenness as proxy variables, through geostatistical analysis, Geographic Information Systems and remote sensing. There was an increase in the average greenness of the parks according to their size and the socioeconomic stratum where they are located, the tree coverage increased in the highest strata. Coldspots and hotspots of these variables and the thermal regulation potential were identified in the areas with the lowest and highest strata, respectively.eng
dc.format.mimetypeapplication/pdfspa
dc.format.mimetypetext/xmlspa
dc.language.isospaspa
dc.publisherUniversidad Distrital Francisco José de Caldasspa
dc.rightsColombia forestal - 2019spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttps://revistas.udistrital.edu.co/index.php/colfor/article/view/14304spa
dc.subjectTree canopy covereng
dc.subjectNormalized difference vegetation indexeng
dc.subjectUrban heat islandeng
dc.subjectEnvironmental inequityeng
dc.subjectUrban parkseng
dc.subjectUrban ecosystem serviceseng
dc.subjectCobertura arbóreaspa
dc.subjectÍndice de vegetación de diferencia normalizadaspa
dc.subjectIsla de calorspa
dc.subjectInequidad ambientalspa
dc.subjectParques urbanosspa
dc.subjectServicios ecosistémicos urbanosspa
dc.titleDistribución de la infraestructura verde y su capacidad de regulación térmica en Bogotá, Colombiaspa
dc.typeArtículo de revistaspa
dc.identifier.doi10.14483/2256201X.14304
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.localJournal articleeng
dc.title.translatedDistribution of the green infrastructure and its thermal regulation capacity in Bogotá, Colombiaeng
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.relation.referencesAide, T. M. y Grau, H. R. (2004). Globalization, migration and Latin American ecosystems. Science, 305, 1915-1916. https://doi.org/10.1126/science.1103179 Ángel, L., Ramírez, A. y Domínguez, E. (2010). Isla de calor y cambios espacio-temporales de la temperatura en la ciudad de Bogotá. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 34(131), 173-183. Anselin, L., Syabri, I. y Kho, Y. (2006). GeoDa: An introduction to spatial data analysis. Geographical Analysis, 38(1), 5-22. https://doi.org/10.1111/j.0016-7363.2005.00671.x Ayanu, Y. Z., Conrad, C., Nauss, T., Wegmann, M. y Koellner, T. (2012). Quantifying and mapping ecosystem services supplies and demands: A review of remote sensing applications. Environmental Science & Technology, 46, 8529-8541. https://doi.org/10.1021/es300157u Basara, J. B., Basara, H. G., Illston, B. G. y Crawford, K. C. (2010). The impact of the urban heat island during an intense heat wave in Oklahoma City. Advances in Meteorology. http://doi.org/10.1155/2010/230365 Bolund, P. y Hunhammar, S. (1999). Ecosystem services in urban areas. Ecological Economics, 29, 293-301. https://doi.org/10.1016/S0921-8009(99)00013-0 Bowler, D. E., Buyung-Ali, L., Knight, T. M. y Pullin, A. S. (2010). Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and urban planning, 97(3), 147-155. https://doi.org/10.1016/j.landurbplan.2010.05.006 Brown, M. (2012). The Bogotá Green Divide: Inequality in Street Tree Coverage Across Estratos. Recuperado de http://www.citinature.org/uploads/4/7/4/0/4740372/citinature_report_bogota_green_divide.pdf Burkhard, B., Kroll, F., Müller, F. y Windhorst, W. (2009). Landscapes’ capacities to provide ecosystem services - a–concept for Land-Cover based assessments. Landscape online, 15, 1-22. https://doi.org/10.3097/LO.200915 Burkhard, B., Kroll, F., Nedkov, S. y Müller, F. (2012). Mapping ecosystem service supply, demand and budgets. Ecological Indicators, 21, 17-29. https://doi.org/10.1016/j.ecolind.2011.06.019 Celemin, J. P. (2009). Autocorrelación espacial e indicadores locales de asociación espacial. Importancia, estructura y aplicación. Revista Universitaria de Geografía, 18(1), 11-31. Recuperado de http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1852-42652009000100002 Chander, G., Markham, B. L. y Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote sensing of environment, 113, 893-903. https://doi.org/10.1016/j.rse.2009.01.007 Chuvieco, E. (2016). Fundamentals of satellite remote sensing: An environmental approach. CRC press. Cortinovis, C. y Geneletti, D. (2018). Mapping and assessing ecosystem services to support urban planning: A case study on brownfield regeneration in Trento, Italy. One Ecosystem, 3, e25477. https://doi.org/10.3897/oneeco.3.e25477 Cristancho, C. y Triana, E. (2018). Análisis demográfico y proyecciones poblacionales de Bogotá. Bogotá: Secretaría Distrital de Planeación. Recuperado de http://www.sdp.gov.co/sites/default/files/demografia_proyecciones_2017_0_0.pdf Dawes, L. C., Adams, A. E., Escobedo, F. J. y Soto J. R. (2018). Socioeconomic and ecological perceptions and barriers to urban tree distribution and reforestation programs. Urban Ecosystems, 21(4), 657-671. https://doi.org/10.1007/s11252-018-0760-z De la Maza, C. L., Hernández, J., Brown, H., Rodríguez, M. y Escobedo, F. (2002). Vegetation diversity in the Santiago de Chile urban ecosystem. Arboricultural Journal, 126(4), 347-357. https://doi.org/10.1080/03071375.2002.9747349 Dirpen (2006). Manual del censista y auxiliar: censo del árbol urbano de Bogotá D.C. Bogotá: Jardín Botánico de Bogotá José Celestino Mutis, Departamento Nacional de Estadística. Egoh, B., Drakou, E. G., Dunbar, M. B., Maes, J. y Willemen, L. (2012). Indicators for Mapping Ecosystem Services: A Review. Luxemburgo: European Comission, Joint Research Centre. Egoh, B., Reyers, B., Rouget, M., Richardson, D. M., Le Maitre, D. C. y van Jaarsveld, A. S. (2008). Mapping ecosystem services for planning and management. Agriculture, Ecosystems and Environment, 127, 135-140. https://doi.org/10.1016/j.agee.2008.03.013 Eigenbrod, F., Armsworth, P. R., Anderson, B. J., Heinemeyer, A., Gillings, S., Roy, D.V., … y Gaston, K. J. (2010). The impact of proxy-based methods on mapping the distribution of ecosystem services. Journal of Applied Ecology, 47, 377-385. https://doi.org/10.1111/j.1365-2664.2010.01777.x Ellis, E. C. y Ramankutty, N. (2008). Putting people in the map: anthropogenic biomes of the world. Frontiers in Ecology and the Environment, 6(8), 439-447. https://doi.org/10.1890/070062 Ernstson, H. (2013). The social production of ecosystem services: A framework for studying environmental justice and ecological complexity in urbanized landscapes. Landscape and Urban Planning, 109(1), 7-17. https://doi.org/10.1016/j.landurbplan.2012.10.005 Escobedo, F. J., Clerici, N., Staudhammer, C. L. y Corzo, G. T. (2015). Socio-ecological dynamics and inequality in Bogotá, Colombia’s public urban forests and their ecosystem services. Urban Forestry and Urban Greening, 14, 1040-1053. https://doi.org/10.1016/j.ufug.2015.09.011 Escobedo, F. J., Palmas-Perez, S., Dobbs, C., Gezan, S. y Hernández, J. (2016). Spatio-Temporal Changes in Structure for a Mediterranean Urban Forest: Santiago, Chile 2002 to 2014. Forests, 7, 121. https://doi.org/10.3390/f7060121 Feltynowski, M., Kronenberg, J., Bergier, T., Kabisch, N., Łaszkiewicz, E. y Strohbach, M. W. (2018). Challenges of urban green space management in the face of using inadequate data. Urban Forestry and Urban Greening, 31, 56-66. https://doi.org/10.1016/j.ufug.2017.12.003 Foley, A., DeFries, R., Asner, G., Barford, C., Bonan, G., Carpenter, S., … y Snyder, P. (2005). Global consequences of land use. Science, 309, 570-574. https://doi.org/10.1126/science.1111772 Glenn, E. P., Huete, A. R., Nagler, P. L. y Nelson, S. G. (2008). Relationship between remotely-sensed vegetation indices, canopy attributes and plant physiological processes: What vegetation indices can and cannot tell us about the landscape. Sensors, 8, 2136-2160. https://doi.org/10.3390/s8042136 Gómez-Baggethun, E. y Barton, D.N. (2013). Classifying and valuing ecosystem services for urban planning. Ecological Economics, 86, 235-245. https://doi.org/10.1016/j.ecolecon.2012.08.019 Gómez-Baggethun, E., Gren, Å., Barton, D. N., Langemeyer, J., McPhearson, T., O’Farrell, P., … y Kremer, P. (2013). Urban ecosystem services. En T. Elmqvist, M. Fragkias, J. Goodness, B. Güneralp, P.J. Marcotullio, R.I. McDonald, … C. Wikinson (eds.), Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities (pp. 175-251). Dordrecht: Springer. Grimmond, S. U. E. (2007). Urbanization and global environmental change: local effects of urban warming. The Geographical Journal, 173(1), 83-88. https://doi.org/10.1111/j.1475-4959.2007.232_3.x Hardin, P. J y Jensen, R. R. (2007). The effect of urban leaf area on summertime urban surface kinetic temperatures: a Terre Haute case study. Urban Forest Urban Green, 6, 63-72. https://doi.org/10.1016/j.ufug.2007.01.005 Hernández, I. (ed.) (2016). La estratificación en Bogotá: impacto social y alternativas para asignar subsidios. Bogotá: Secretaría Distrital de Planeación. Huang, C. y Ye, X. (2015). Spatial Modeling of urban vegetation and land surface temperature: A case study of Beijing. Sustainability, 7, 9478-9504. https://doi.org/10.3390/su7079478 Isaacs, P. J. y Jaimes, V. I. (2014). Análisis multitemporal de la estructura del paisaje del Distrito Capital, años 1991-2012. Bogotá: Jardín Botánico de Bogotá José Celestino Mutis. Jensen, J. R. (2000). Remote sensing of the environment: An earth resource perspective. Upper River: Prantice Hall. Jim, C. Y. y Chen, W. Y. (2009). Ecosystem services and valuation of urban forests in China. Cities, 26, 187-194. https://doi.org/10.1016/j.cities.2009.03.003 Kabisch, N. y Haase, D. (2014). Green justice or just green? Provision of urban green spaces in Berlin, Germany. Landscape and Urban Planning, 122, 129-139. https://doi.org/10.1016/j.landurbplan.2013.11.016 Kerr, J. T. y Ostrovsky, M. (2003). From space to species: Ecological applications for remote sensing. Trends in Ecology and Evolution, 18(6), 299-305. https://doi.org/10.1016/S0169-5347(03)00071-5 Leslie, E., Sugiyama, T., Ierodiaconou, D. y Kremer, P. (2010). Perceived and objectively measured greenness of neighbourhoods: Are they measuring the same thing? Landscape and Urban Planning, 95, 28-33. https://doi.org/10.1016/j.landurbplan.2009.11.002 Livesley, S. J., McPherson, E. G. y Calfapietra, C. (2016). The urban forest and ecosystem services: Impacts on urban water, heat, and pollution cycles at the tree, street, and city scale. Journal of Environmental Quality, 45(1), 119-124. https://doi.org/10.2134/jeq2015.11.0567 Lovell, S. T. y Taylor, J. R. (2013). Supplying urban ecosystem services through multifunctional green infrastructure in the United States. Landscape Ecology, 28, 1447-1463. https://doi.org/10.1007/s10980-013-9912-y Maes, J., Egoh, B., Willemen, L., Liquete, C., Vihervaara, P., Schägner, J.P., … y Bidoglio, G. (2012). Mapping ecosystem services for policy support and decision making in the European Union. Ecosystem Services, 1, 31-39. https://doi.org/10.1016/j.ecoser.2012.06.004 Maes, J., Polce, C., Zulian, G., Vandecasteele, I., Perpiña, C., Rivero, I.M., Guerra, C., Vallecillo, S., Vizcaino, P. y Hiederer, R. (2017). Mapping Regulating Ecosystem Services. En J. Burkhard y J. Maes (eds.), Mapping Ecosystem Services (pp. 179-188). Sofia: Pensoft Publishers. Mahecha, G., Sánchez, F., Chaparro, J., Cadena, H., Tovar, G., Villota, L., Morales, G., Castro, J., Bocanegra, F. y Quintero, M. (2010). Arbolado urbano de Bogotá: Identificación, descripción y bases para su manejo. Bogotá: Secretaría Distrital de Ambiente. McPhearson, T. (2011). Toward a sustainable New York City: Greening through urban forest restoration. En E. Slavin (ed.), Sustainability in America’s Cities: Creating the Green Metropolis (pp. 181-204). Washington: Island Press. Mitchell, R. y Popham, F. (2008). Effect of exposure to natural environment on health inequalities: An observational population study. Lancet, 372, 1655-1660. https://doi.org/10.1016/S0140-6736(08)61689-X Muñoz, J. H. y Ducón, J. C. (2016). Análisis econométrico espacial de las localidades de Bogotá y municipios del borde urbano. Criterios, 9(2), 129-157. Recuperado de http://www.revistas.usb.edu.co/index.php/criterios/article/view/3088 Nesbitt, L. y Meitner, M. J. (2016). Exploring relationships between socioeconomic background and urban greenery in Portland, OR. Forests, 7, 162. https://doi.org/10.3390/f7080162 Norton, B. A., Coutts, A. M., Livesley, S. J., Harris, R. J., Hunter, A. M. y Williams, N. (2015). Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landscape and Urban Planning, 134, 127-138. https://doi.org/10.1016/j.landurbplan.2014.10.018 Nowak, D. J., Crane, D. E., Stevens, J. C., Hoehn, R. E., Walton, J. T. y Bond, J. (2008). A ground based method of assessing urban forest structure and ecosystem services. Arboriculture & Urban Forestry, 34(6), 347-358. Ochoa, V. y Urbina-Cardona, N. (2017). Tools for spatially modeling ecosystem services: Publications trends, conceptual reflections and future challenges. Ecosystem Services, 26, 155-169. https://doi.org/10.1016/j.ecoser.2017.06.011 Patz, J. A., Campbell-Lendrum, D., Holloway, T. y Foley, J. A. (2005). Impact of regional climate change on human health. Nature, 438, 310-317. https://doi.org/10.1038/nature04188 Pedlowski, M. A., Da Silva, V. A., Adell, J. J. y Heynen, N. C. (2002). Urban forests and environmental inequality in Campos Dos Goytacazes, Rio de Janeiro, Brazil. Urban Ecosystems, 6, 9-20. https://doi.org/10.1023/A:1025910528583 Peng, S., Piao, S., Clais, P., Friedlingstein, P., Ottle, C., Bréon, F. M., … y Myneni, R. B. (2012). Surface Urban Heat Island Across 419 Global Big Cities. Environmental Science and Technology, 46, 696-703. https://doi.org/10.1021/es2030438 Pickett, S. T. A., Cadenasso, M. L., Rosi-Marshall, E. J., Belt, K. T., Groffman, P. M., Grove, J. M., ... y Swan, C. M. (2017). Dynamic heterogeneity: a framework to promote ecological integration and hypothesis generation in urban systems. Urban Ecosystems, 20(1), 1-14. https://doi.org/10.1007/s11252-016-0574-9 QGIS Development Team (2011). QGIS Geographic Information System. Beaverton: Open Source Geospatial Foundation Project. Recuperado de http://qgis.osgeo.org R Core Team (2016). R: A language and environment for statistical computing. Viena: R Foundation for Statistical Computing. Recuperado de https://www.R-project.org/ Rizwan, A. M., Dennis, Y. C. L. y Liu, C. (2008). A review on the generation, determination and mitigation of urban heat islands. Journal of Environmental Sciences, 20, 120-128. https://doi.org/10.1016/S1001-0742(08)60019-4 Rodríguez-Laguna, R., Meza-Rangel, J., Vargas-Hernández, J. y Jiménez-Pérez, J. (2009). Variación en la cobertura de suelo en un ensayo de procedencias de Pinus greggii Engelm. en el cerro El Potosí, Galeana, Nuevo León. Madera y Bosques, 15(1), 47-59. Recuperado de http://www.scielo.org.mx/scielo.php?pid=S1405-04712009000100004&script=sci_abstract&tlng=en Romero, J. A. (2010). Transformación urbana de la ciudad de Bogotá, 1990-2010: efecto espacial de la liberalización del comercio. Perspectiva Geográfica, 15, 85-112. Rouse, J. W., Haas, R. W., Schell, J. A., Deering, D. W. y Harlan, J. C. (1974). Monitoring the vernal advancement and retrogradation (Greenwave effect) of natural vegetation. Greenbelt: NASA/GSFCT. Santamouris, M., Cartalis, C., Synnefa, A. y Kolokotsa, D. (2015). On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings—A review. Energy and Buildings, 98, 119-124. https://doi.org/10.1016/j.enbuild.2014.09.052 Schneiders, A., Van Daele, T., Van Laduyt, W. y Van Reeth, W. (2012). Biodiversity and ecosystem services: Complementary approaches for ecosystem management? Ecological Indicators, 21, 123-133. https://doi.org/10.1016/j.ecolind.2011.06.021 Schwarz, K., Fragkias, M., Boone, C. G., Zhou, W., McHale, M., Grove, J. M., ... y Ogden, L. (2015). Trees grow on money: urban tree canopy cover and environmental justice. PLoS One, 10(4). https://doi.org/10.1371/journal.pone.0122051 Secretaría Distrital de Planeación (2009). Conociendo Bogotá y sus localidades: resumen de los principales aspectos físicos, demográficos y socioeconómicos. Bogotá: Alcaldía Mayor de Bogotá. Recuperado de http://oab.ambientebogota.gov.co/es/con-la-comunidad/ES/cartilla-conociendo-las-localidades-de-bogota Shashua-Bar, L. y Hoffman, M. E. (2000). Vegetation as a climatic component in the design of an urban street: An empirical model for predicting the cooling effect of urban green areas with trees. Energy and Buildings, 31(3), 221-235 Shultz, J. M., Garfin, D. R., Espinel, Z., Araya, R., Oquendo, M. A., Wainberg, M. L., ... y Wilson, F. E. (2014). Internally displaced “victims of armed conflict” in Colombia: the trajectory and trauma signature of forced migration. Current Psychiatry Reports, 16(10), 475. Sierra-Guerrero, M. C. y Amarillo-Suárez, A. R. (2017). Socioecological features of plant diversity in domestic gardens in the city of Bogotá, Colombia. Urban Forestry and Urban Greening, 28, 54-62. https://doi.org/10.1016/j.ufug.2017.09.015 Storey, J., Choate, M. y Lee, K. (2014). Landsat 8 Operational Land Imager On-Orbit Geometric Calibration and Performance. Remote Sensing, 6, 11127-11152. https://doi.org/10.3390/rs61111127 Tzoulas, K., Korpela, K., Venn, S., Yli-Pelkonen, V., Kaźmierczak, A., Niemela, J. y James, P. (2007). Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. Landscape and Urban Planning, 81(3), 167-178. https://doi.org/10.1016/j.landurbplan.2007.02.001 United Nations (2018). World Urbanization Prospects: The 2018 Revision. Nueva York: Department of Economic and Social Affairs, Population Division. United States Geological Survey (2017). Product guide: Landsat 8 Surface Reflectance Code (LaRSC) Product. Sioux Falls: Department of Interior. Weng, Q. (2009). Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications and trends. ISPRS Journal of Photogrammetry and Remote Sensing, 64(4), 335-344. https://doi.org/10.1016/j.isprsjprs.2009.03.007 Weng, Q., Lu, D. y Schubring, J. (2004). Estimation of land surface temperature – vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 89(4), 467-483. https://doi.org/10.1016/j.rse.2003.11.005 Wilson, N. R., Norman, L. M., Villareal, M., Gass, L., Tiller, R. y Salywon, A. (2016). Comparison of remote sensing indices for monitoring of desert cienegas. Arid Land Research and Management, 30(4), 460-478. https://doi.org/10.1080/15324982.2016.1170076 Wolch, J. R., Byrne, J. y Newell, J. P. (2014). Urban green space, public health, and environmental justice: The challenge of making cities ‘just green enough’. Landscape and Urban Planning, 125, 234-244. https://doi.org/10.1016/j.landurbplan.2014.01.017 Zar, J. H. (2010). Biostatistical analysis. Upper Saddle River: Prentice Hall. Zardo, L., Geneletti, D., Pérez-Soba, M. y Van Eupen, M. (2017). Estimating the cooling capacity of Green infrastructures to support urban planning. Ecosystem Services, 26, 225-235. https://doi.org/10.1016/j.ecoser.2017.06.016 Zhao, S., Da, L., Tang, Z., Fang, H., Song, K. y Fang, J. (2006). Ecological consequences of rapid urban expansion: Shanghai, China. Frontiers in Ecology and the Environment, 4(7), 341-346. https://doi.org/10.1890/1540-9295(2006)004[0341:ECORUE]2.0.CO;2 Zhou, W., Pickett, S. T. y Cadenasso, M. L. (2017). Shifting concepts of urban spatial heterogeneity and their implications for sustainability. Landscape ecology, 32(1), 15-30. https://doi.org/10.1007/s10980-016-0432-4 Zhou, W., Troy, A., Grove, J. M. y Jenkins, J. C. (2009). Can money buy green? Demographic and socioeconomic predictors of lawn-care expenditures and lawn greenness in urban residential areas. Society and Natural Resources, 22(8), 744-760. https://doi.org/10.1080/08941920802074330 Zulian, G., Liekens, I., Broekx, S., Kabisch, N., Kopperoinen, L. y Geneletti, D. (2017). Mapping urban ecosystem services. En J. Burkhard y J. Maes (eds.), Mapping Ecosystem Services (pp. 312-318). Sofia: Pensoft Publishers.spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.relation.citationvolume22spa
dc.relation.citationissue2spa
dc.relation.citationeditionNúm. 2 , Año 2019 : Julio-diciembrespa
dc.relation.ispartofjournalColombia forestalspa
dc.identifier.eissn2256-201X
dc.identifier.urlhttps://doi.org/10.14483/2256201X.14304
dc.relation.citationstartpage83
dc.relation.citationendpage100
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/14304/14906
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/14304/15107
dc.type.contentTextspa
dspace.entity.typePublicationspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Colombia forestal - 2019
Excepto si se señala otra cosa, la licencia del ítem se describe como Colombia forestal - 2019