Mostrar el registro sencillo del ítem

dc.contributor.authorValverde Otárola, Juan Carlosspa
dc.contributor.authorArias, Dagobertospa
dc.date.accessioned2020-01-01 00:00:00
dc.date.accessioned2023-09-19T21:10:20Z
dc.date.available2020-01-01 00:00:00
dc.date.available2023-09-19T21:10:20Z
dc.date.issued2020-01-01
dc.identifier.issn0120-0739
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/44466
dc.description.abstractEl estrés hídrico es una reacción fisiológica de las plantas ante la disponibilidad limitada de agua. Este estudio valoró el efecto del estrés en plántulas de Gliricidia sepium cultivadas en condiciones de invernadero, utilizando plantas testigo y dos tipos de estrés (lineal y cíclico). El estrés generó reducciones en el crecimiento en altura del 30 % y de la lámina foliar del 40 %. Las plantas con estrés lineal mostraron a los 98 días un estrés severo con valores fisiológicos mínimos (fotosíntesis 4.51 µmol m-2.s-1, transpiración 6.56 µmol m-2.s-1, conductancia 48.6 µmol m-2.s-1); en cambio, las plantas con estrés cíclico si bien se expusieron a un estrés moderado, mostraron recuperación con valores fisiológicos finales estables (fotosíntesis 12.96 µmol m-2.s-1, transpiración 6.22 µmol m-2.s-1, conductancia 196.05 µmol m-.2s-1), con un retardo del crecimiento del 30 % con respecto a las plantas testigo, encontrando que en 42 días de estrés la condición es grave.spa
dc.description.abstractWater stress is a physiological reaction of plants to the limited availability of water. The study assessed the effect of stress on seedlings of Gliricidia sepium grown in greenhouse conditions, using control plants and two types of stress (linear and cyclic). Stress generated reductions in height growth of 30 % and foliar leaf 40 %. Plants with linear stress showed severe stress with minimal physiological values at 98 days (photosynthesis 4.51 µmol m-2.s-1, transpiration 6.56 µmol m-2.s-1, conductance 48.6 µmol m-2.s-1), on the other hand, plants with cyclic stress, although they were exposed to moderate stress, showed recovery with stable final physiological values (photosynthesis 12.96 µmo m-2..s-1, perspiration 6.22 µmol m-2.s-1, conductance 196.05 µmol m-2s-1), with a 30 % growth delay with respect to the control plants, finding that 42 days of stress the condition is severe.eng
dc.format.mimetypeapplication/pdfspa
dc.format.mimetypetext/xmlspa
dc.language.isospaspa
dc.publisherUniversidad Distrital Francisco José de Caldasspa
dc.rightsColombia forestal - 2020spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttps://revistas.udistrital.edu.co/index.php/colfor/article/view/14786spa
dc.subjectseedlingeng
dc.subjectgreenhouseeng
dc.subjectphotosynthesiseng
dc.subjecttranspirationeng
dc.subjectleaf turgoreng
dc.subjectplántulaspa
dc.subjectinvernaderospa
dc.subjectfotosíntesisspa
dc.subjecttranspiraciónspa
dc.subjectturgencia foliarspa
dc.titleEfectos del estrés hídrico en crecimiento y desarrollo fisiológico de <i>Gliricidia sepium</i> (Jacq.) Kunth ex Walp.spa
dc.typeArtículo de revistaspa
dc.identifier.doi10.14483/2256201X.14786
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.localJournal articleeng
dc.title.translatedEffects of water stress on growing and physiological development of Gliricidia sepium (Jacq.) Kunth ex Walp.eng
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.relation.referencesBlum, A. (2011). Plant Breeding for Water-Limited Environments. Amsterdam: Springer Science+Business Media. https://doi.org/10.1007/978-1-4419-7491-4_2spa
dc.relation.referencesCamareroa, J., Sánchez-Salguero, R., Sangüesa-Barredaa, G., Matías, L. (2018). Tree species from contrasting hydrological niches show divergent growthand water-use efficiency. Dendrochronologia, 52, 87-95. DOI: https://doi.org/10.1016/j.dendro.2018.10.003spa
dc.relation.referencesCaplan, J., Galanti, R., Olshevski, S. y Eisenman., R. (2019). Water relations of street trees in green infrastructure tree trench systems. Urban Forestry & Urban Greening, 41, 170-178.spa
dc.relation.referencesde la Rosa, J. M., Conesa, M. R., Domingo, R. y Pérez-Pastor, A. (2014). A new approach to ascertain the sensitivity to water stress of different plant water indicators in extra-early nectarine trees. Scientia Horticulturae, 169,147-153. DOI: https://doi.org/10.1016/j.scienta.2014.02.021spa
dc.relation.referencesDrechsler, K., Kisekkaa, I. y Upadhyaya, S. (2019). A comprehensive stress indicator for evaluating plant water status in almondtrees. Agricultural Water Management, 216, 214-223.spa
dc.relation.referencesdi Vaio, C., Marallo, N., Marino, G. y Caruso, T. (2013). Effect of water stress on dry matter accumulation and partitioning inpot-grown olive trees (cv Leccino and Racioppella). Scientia Horticulturae, 164(2013), 155-159. DOI: https://doi.org/10.1016/j.scienta.2013.09.008spa
dc.relation.referencesEhrenberger, W., Rüger, S., Fitzke, R., Vollenweider, P., Günthardt-Goerg, P., Kuster, T., Zimmermann, U. y Arend, M. (2012). Concomitant dendrometer and leaf patch pressure probe measurements reveal the effect of microclimate and soil moisture on diurnal stem water and leaf turgor variations in young oak trees. Londres: Functional Plant Biology. DOI: https://doi.org/10.1071/FP11206spa
dc.relation.referencesFernández, J. E., Rodriguez-Dominguez, C. M., Perez-Martin, A., Zimmermann, U., Rüger, S., Martín-Palomo, M. J., Torres-Ruiz, J. M., Cuevas, M. V., Sann, C., Ehren-berger, W. y Diaz-Espejo, A., (2011). Online-monitoring of tree water stress in a hedgerow olive orchard using the leaf patch clamp pressure probe. Agricultural Water Management, 100, 25-35.spa
dc.relation.referencesGirón, I. F., Corell, M., Galindo, A., Torrecillas, E., Morales, D., Dell’Amico, J., Torrecillas, A., Moreno, F. y Moriana, A. (2015). Changes in the physiological response between leaves and fruits during a moderate water stress in table olive trees. Agricultural Water Management, 148, 280-286. DOI: https://doi.org/10.1016/j.agwat.2014.10.024spa
dc.relation.referencesGuerfel, M., Baccouri, O., Boujnah, D., Chaïbi, W. y Zarrouk, M. (2009). Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main Tunisian olive (Olea europaea L.) cultivars. Scientia Horticulturae, 119, 257-263. DOI: https://doi.org/10.1016/j.scienta.2008.08.006spa
dc.relation.referencesHammani, S. B. M., Costagli, G. y Rapoport, H. F. (2013). Cell and tissue of olive endo-carp sclerication vary according to water availability. Physiologia Plantarum, 149, 571-582.spa
dc.relation.referencesInstituto Meteorológico Nacional (IMN) (2018). Condiciones meteorológico nacionales. Recuperado de http://www.imn.ac.crspa
dc.relation.referencesKrause, G. H., Winter, K., Matsubara, S., Krause, B., Jahns, P., Virgo, A., Aranda, J. y García, M. (2012). Photosynthesis, photoprotection, and growth of shade-tolerant tropical tree seedlings under full sunlight. Photosynthesis Research, 113, 237-285. DOI: https://doi.org/10.1007/s11120-012-9731-zspa
dc.relation.referencesLim, T. K. (2013). Edible Medicinal and Non-Medicinal Plants. Amsterdam: Springer Netherlands. DOI: https://doi.org/10.1007/978-94-007-7395-0_64spa
dc.relation.referencesLópez-López, M., Espadafor, M., Testia, L., Loriteb, I., Orgaza, F., Fereres, E. (2018). Water use of irrigated almond trees when subjected to water deficits. Agricultural Water Management, 195, 84-93.spa
dc.relation.referencesMaatallah, M., Ghanem, M. E., Albouchi, A., Bizid, E. y Lutts, S. (2010). A greenhouse investigation of responses to different water stress regimes of Laurus nobilis trees from two climatic regions. Journal of Arid Environments, 74, 327-337. DOI: https://doi.org/10.1016/j.jaridenv.2009.09.008spa
dc.relation.referencesMyers, B. J. (1988). Water stress integral a link between short term stress and long term growth. Tree Physiology, 4, 315-323.spa
dc.relation.referencesOrtuño, F. M., García-Orellana, T., Conejero, W., Ruiz-Sánchez, C. M., Alarcón, J. y Torrecillas, A. (2006). Stem and leaf water potentials, gas exchange, sap flow, and trunk diameter fluctuations for detecting water stress in lemon trees. Trees, 20, 1-8. DOI: https://doi.org/10.1007/s00468-005-0004-8spa
dc.relation.referencesPedrero, F., Maestre-Valero, J. F., Mounzer, O., Alarcón, J. J. y Nicolás, E. (2014). Physiological and agronomic mandarin trees performance under saline reclaimed water combined with regulated deficit irrigation. Agricultural Water Management, 146, 228-237. DOI: https://doi.org/10.1016/j.agwat.2014.08.013spa
dc.relation.referencesRegent Instrument (2012). WinFOLIA pro 2012. Boston: Regent Instrument Inc. Recuperado de https://www.regentinstruments.comspa
dc.relation.referencesRodriguez-Dominguéz, C. M., Ehrenberger, W., Sann, S., Rüger, S., Sukhorukov, V., Martín-Palomo, M. J., Diaz-Espejo, A., Cuevas, M. V., Torres-Ruiz, J. M., Perez-Martin, A., Zimmermann, U. y Fernández, J. E. (2012). Concomitant measurements of stem sap flow and leaf turgor pressure in olive trees using the leaf patch clamp pressure probe. Agricultural Water Management, 114, 50-58. DOI: https://doi.org/10.1016/j.agwat.2012.07.007spa
dc.relation.referencesRoussos, P. A., Denaxa, N. K., Damvakaris, T., Stournaras, V. y Argyrokastritis, I. (2010). Effect of alleviating products with different mode of action on physiology and yield of olive under drought. Scientia Horticulturae, 125, 700-711. DOI: https://doi.org/10.1016/j.scienta.2010.06.003spa
dc.relation.referencesSanchez-Costa, E., Poyatos, R. y Sabate, S. (2015). Contrasting growth and water use strategies in four co-occurring Mediterranean tree species revealed by concurrent measurements of sap flow and stem diameter variations. Agricultural and Forest Meteorology, 207, 24-37. DOI: https://doi.org/10.1016/j.agrformet.2015.03.012spa
dc.relation.referencesStatsoft (2015). Statistica, version 9.0. Londres: Statsoft. Recuperado de http://www.statsoft.comspa
dc.relation.referencesSzota, C., Coutts, A., Thom, J., Virahsawmy, H., Fletcher, T. y Livesley, S. (2019). Street tree stormwater control measures can reducer un off but may not benefit established trees. Landscape and Urban Planning, 182, 144-155.spa
dc.relation.referencesTong, X., Mu, Y., Zhang, J., Meng, P. y Li, J. (2019). Water stress controls on carbon flux and water use efficiency in a warm-temperate mixed plantation. Journal of Hydrology, 571, 669-678.spa
dc.relation.referencesVarone, L., Ribas-Carbo, M., Cardona, C., Gallé, A., Medrano, H., Gratani, J. y Flexas, J. (2012). Stomatal and non-stomatal limitations to photosynthesis in seedlings and saplings of Mediterranean species pre-conditioned and aged in nurseries: Different response to water stress. Environmental and Experimental Botany, 75, 235-247. DOI: https://doi.org/10.1016/j.envexpbot.2011.07.007spa
dc.relation.referencesWesthoff, M., Zimmermann, D., Schneider, H., Wegner, L. H., Geßner, P., Jakob, P., Bamberg, E., Shirley, S., Bentrup, F. W. y Zimmermann, U. (2009). Evidence for discontinuous water columns in the xylem conduit of tall birch trees. Plant Biology, 11, 307-327.spa
dc.relation.referencesZaharah, A. R., Bah, A. R., Mwange, N. X., Kathuli, P. y Juma, P. (1999). Management of Gliricidia (Gliricidia sepium) residues for improved sweet corn yield in an ultisol. Nutrient Cycling in Agroecosystems, 54, 31-39.spa
dc.relation.referencesZimmermann, U., Schneider, H., Wegner, L. H. y Haase, A. (2004). Water ascent in tall trees: does evolution of land plants rely on a highly metastable state? New Phytologist (Tansley Review), 162, 575-615.spa
dc.relation.referencesZimmermann, D., Westhoff, M. y Zimmermann, G. (2007). Foliar water supply of tall trees: evidence for mucilage-facilitated moisture uptake from the atmosphere and the impact on pressure bomb measurements. Protoplasma, 232, 11-34.spa
dc.relation.referencesZimmermann, D., Reuss, R., Westhoff, M., Geßner, P., Bauer, W., Bamberg, E., Bentrup, F. W. y Zimmermann, U. (2008). A novel, non-invasive, online-monitoring, versatile and easy plant-based probe for measuring leaf water status. Journal of Experimental Botany, 59(11), 3157-3167. DOI: https://doi.org/10.1093/jxb/ern171spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.relation.citationvolume23spa
dc.relation.citationissue1spa
dc.relation.citationeditionNúm. 1 , Año 2020 : Enero-Juniospa
dc.relation.ispartofjournalColombia forestalspa
dc.identifier.eissn2256-201X
dc.identifier.urlhttps://doi.org/10.14483/2256201X.14786
dc.relation.citationstartpage20
dc.relation.citationendpage34
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/14786/15438
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/14786/15724
dc.type.contentTextspa
dspace.entity.typePublicationspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Colombia forestal - 2020
Excepto si se señala otra cosa, la licencia del ítem se describe como Colombia forestal - 2020