Mostrar el registro sencillo del ítem

dc.contributor.authorTovar Blanco, Adriana Lizethspa
dc.contributor.authorLizarazo Salcedo, Iván Albertospa
dc.contributor.authorRodríguez Eraso, Nellyspa
dc.date.accessioned2020-01-01 00:00:00
dc.date.accessioned2023-09-19T21:10:22Z
dc.date.available2020-01-01 00:00:00
dc.date.available2023-09-19T21:10:22Z
dc.date.issued2020-01-01
dc.identifier.issn0120-0739
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/44469
dc.description.abstractLa estimación de la biomasa aérea usando sistemas de aprendizaje automático es útil para conocer de forma rápida y sistemática la productividad en bosques y plantaciones. En este estudio la biomasa aérea (AGB) se estimó para las plantaciones forestales de Eucalyptus grandis y Pinus spp. ubicadas en el sector centro-oriental del departamento del Cauca (Colombia). Las variables de mayor incidencia en AGB para E. grandis fueron las bandas SWIR y las texturas de la polarización VV; mientras que para P. spp fueron CorrelaciónVV, GNDVI y B2. Los modelos obtenidos combinando datos ópticos y SAR muestran mejores resultados con un coeficiente de determinación R2 = 0.27 y un error cuadrado promedio EMC = 42.75 t.ha-1 en E. grandis, y R2 = 0.36 y EMC = 141.71 t.ha-1 en Pinus spp. El estudio demostró el potencial de combinar datos Sentinel para estimar la AGB en plantaciones comerciales y el uso de Randon forest para la construcción de los modelos, pero aún se requiere el estudio del acoplamiento espacial de los datos de campo y su incidencia en las estimaciones de los modelos, así como la pertinencia de adelantar estudios a nivel de especies para evaluar su incertidumbre.  spa
dc.description.abstractAboveground biomass estimation, using machine-learning systems, is useful for rapid and systematic knowledge of productivity in forests and plantations. In this study, forest aboveground biomass (AGB) was estimated for plantations of Eucalyptus grandis and Pinus spp located in the central-eastern sector of the department of Cauca (Colombia). The variables with the highest incidence in AGB for E. grandis were the SWIR bands and the VV polarization textures, while for Pinus spp. were Correlationvv, GNDVI and B2. The models obtained by combining optical data and SAR show better results with a determination coefficient R2 = 0.27 and an average square error EMC = 42.75 t.ha-1 in E. grandis, and R2 = 0.36 and EMC = 141.71 t.ha-1 in Pinus spp. The study demonstrated the potential of combining Sentinel data to estimate AGB in commercial plantations and the use of Randon forest for model construction.eng
dc.format.mimetypeapplication/pdfspa
dc.format.mimetypetext/xmlspa
dc.language.isospaspa
dc.publisherUniversidad Distrital Francisco José de Caldasspa
dc.rightsColombia forestal - 2020spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttps://revistas.udistrital.edu.co/index.php/colfor/article/view/14854spa
dc.subjectRemote sensingeng
dc.subjectcomercial forest plantationeng
dc.subjectRandom Foresteng
dc.subjectSentineleng
dc.subjectC-bandeng
dc.subjectGLCMeng
dc.subjectVegetation indexeng
dc.subjecttextureseng
dc.subjectAGBeng
dc.subjectPercepción remotaspa
dc.subjectplantación forestal comercialspa
dc.subjectRandom Forestspa
dc.subjectSentinelspa
dc.subjectbanda Cspa
dc.subjectGLCMspa
dc.titleEstimación de biomasa aérea de <i>Eucalyptus grandis</i> y <i>Pinus</i> spp. usando imágenes Sentinel1A y Sentinel2A en Colombiaspa
dc.typeArtículo de revistaspa
dc.identifier.doi10.14483/2256201X.14854
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.localJournal articleeng
dc.title.translatedEstimating aboveground biomass of Eucalyptus grandis and Pinus spp. using Sentinel-1A and Sentinel-2A images in Colombiaeng
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.relation.referencesAskar, Nuthammachot, N., Phairuang, W., Wicaksono, P. y Sayektiningsih, T. (2018). Estimating Aboveground Biomass on Private Forest Using Sentinel-2 Imagery. Journal of Sensors, 2018, 1-11. https://doi.org/10.1155/2018/6745629spa
dc.relation.referencesAsner, G. P., Clark, J. K., Mascaro, J., Galindo García, G. A., Chadwick, K. D., Navarrete Encinales, D. A., … Ordóñez, M. F. (2012). High-resolution mapping of forest carbon stocks in the Colombian Amazon. Biogeosciences, 9(7), 2683-2696. https://doi.org/10.5194/bg-9-2683-2012spa
dc.relation.referencesAttarchi, S. y Gloaguen, R. (2014). Improving the estimation of above ground biomass using dual polarimetric PALSAR and ETM+ data in the Hyrcanian mountain forest (Iran). Remote Sensing, 6(5), 3693-3715. https://doi.org/10.3390/rs6053693spa
dc.relation.referencesBaloloy, B. A., Blanco, C. A., Candido, G. C., Argamosa, R. J. L., Dumalag, J. B. L. C., Dimapilis, L. L. C. y Paringit, E. C. (2018). Estimation of mangrove forest aboveground biomass using multispectral bands, vegetation indices and biophysical variables derived from optical satellite imageries: rapideye, planetscope and sentinel-2. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 4(3), 29-36. https://doi.org/10.5194/isprs-annals-IV-3-29-2018spa
dc.relation.referencesBehera, M. D., Tripathi, P., Mishra, B., Kumar, S., Chitale, V. S. y Behera, S. K. (2016). Above-ground biomass and carbon estimates of Shorea robusta and Tectona grandis forests using QuadPOL ALOS PALSAR data. Advances in Space Research, 57(2), 552-561. https://doi.org/10.1016/j.asr.2015.11.010spa
dc.relation.referencesBourbigot, M., Johnsen, H., Piantanida, R. y Hajduch, G. (2017). Sentinel-1 Sentinel-1 Product Specification S-1 MPC Nomenclature: DI-MPC-PB S-1 MPC Reference: MPC-0240. European Space Agency. Recuperado de https://sentinels.copernicus.eu/documents/247904/349449/Sentinel-1_Product_Specificationspa
dc.relation.referencesBourgoin, C., Blanc, L., Bailly, J., Cornu, G., Berenguer, E., Oszwald, J., … Forest, A. (2018). The Potential of Multisource Remote Sensing for Mapping the Biomass of a Degraded Amazonian Forest. https://doi.org/10.3390/f9060303spa
dc.relation.referencesBourgoin, C., Blanc, L., Bailly, J. S., Cornu, G., Berenguer, E., Oszwald, J., … Gond, V. (2018). The potential of multisource remote sensing for mapping the biomass of a degraded Amazonian forest. Forests, 9(6), 1-21. https://doi.org/10.3390/f9060303spa
dc.relation.referencesBrockerhoff, E. G., Barbaro, L., Castagneyrol, B., Forrester, D. I., Gardiner, B., González-Olabarria, J. R., … Jactel, H. (2017). Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodiversity and Conservation, 26(13), 3005-3035. https://doi.org/10.1007/s10531-017-1453-2spa
dc.relation.referencesCastillo, J. A. A., Apan, A. A., Maraseni, T. N. y Salmo, S. G. (2017). Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 134, 70-85. https://doi.org/10.1016/j.isprsjprs.2017.10.016spa
dc.relation.referencesChen, L., Ren, C., Zhang, B., Wang, Z. y Xi, Y. (2018). Estimation of forest above-ground biomass by geographically weighted regression and machine learning with sentinel imagery. Forests, 9(10), 1-20. https://doi.org/10.3390/f9100582spa
dc.relation.referencesCutler, A., Cutler, D. R. y Stevens, J. R. (2012). Random forests. Ensemble Machine Learning: Methods and Applications, 157-175. https://doi.org/10.1007/9781441993267_5spa
dc.relation.referencesDang, A. T. N., Nandy, S., Srinet, R., Luong, N. V., Ghosh, S. y Senthil Kumar, A. (2019). Forest aboveground biomass estimation using machine learning regression algorithm in Yok Don National Park, Vietnam. Ecological Informatics, 50(julio 2018), 24-32. https://doi.org/10.1016/j.ecoinf.2018.12.010spa
dc.relation.referencesDebastiani, A. B., Sanquetta, C. R., Corte, A. P. D., Pinto, N. S. y Rex, F. E. (2019). Evaluating SAR-optical sensor fusion for aboveground biomass estimation in a Brazilian tropical forest. Annals of Forest Research, 0(0), 109-122. https://doi.org/10.15287/afr.2018.1267spa
dc.relation.referencesDittmann, S., Thiessen, E. y Hartung, E. (2017). Applicability of different non-invasive methods for tree mass estimation: A review. Forest Ecology and Management, 398, 208-215. https://doi.org/10.1016/J. FORECO.2017.05.013spa
dc.relation.referencesdos Reis, A. A., Carvalho, M. C., de Mello, J. M., Gomide, L. R., Ferraz Filho, A. C. y Acerbi, F. W. (2018). Spatial prediction of basal area and volume in Eucalyptus stands using Landsat TM data: an assessment of prediction methods. New Zealand Journal of Forestry Science, 48(1), 1-17. https://doi.org/10.1186/s40490-017-0108-0spa
dc.relation.referencesEsteban, J., McRoberts, R., Fernández-Landa, A., Tomé, J. y Nӕsset, E. (2019). Estimating Forest Volume and Biomass and Their Changes Using Random Forests and Remotely Sensed Data. Remote Sensing, 11(16), 1944. https://doi.org/10.3390/rs11161944spa
dc.relation.referencesFassnacht, F. E., Hartig, F., Latifi, H., Berger, C., Hernández, J., Corvalán, P. y Koch, B. (2014). Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sensing of Environment, 154, 102-114. https://doi.org/10.1016/j.rse.2014.07.028spa
dc.relation.referencesFayad, I., Baghdadi, N., Guitet, S., Bailly, J.-S., Hérault, B., Gond, V., … Tong Minh, D. H. (2016). Aboveground biomass mapping in French Guiana by combining remote sensing, forest inventories and environmental data. International Journal of Applied Earth Observation and Geoinformation, 52, 502-514. https://doi.org/10.1016/j.jag.2016.07.015spa
dc.relation.referencesFernández-Manso, A. Ó. (2009). Estimación de biomasa forestal usando imágenes del sensor ASTER en masas de pino. V Congreso Forestal Español.spa
dc.relation.referencesGalidaki, G., Zianis, D., Gitas, I., Radoglou, K., Karathanassi, V., Tsakiri–Strati, M., … Mallinis, G. (2017). Vegetation biomass estimation with remote sensing: focus on forest and other wooded land over the Mediterranean ecosystem. International Journal of Remote Sensing, 38(7), 1940-1966. https://doi.org/10.1080/01431161.2016.1266113spa
dc.relation.referencesGalindo, G., Cabrera, E., Vargas, D., Pabón, H., Yepes, A., Phillips, J. F., … Ordoñez, M. F. (2011). Estimación de la biomasa aérea usando datos de campo e información de sensores remotos Versión 1.0. Recuperado de http://documentacion.ideam.gov.co/openbiblio/bvirtual/022105/PARTE3.pdfspa
dc.relation.referencesGao, Y., Lu, D., Li, G., Wang, G., Chen, Q., Liu, L. y Li, D. (2018). Comparative analysis of modeling algorithms for forest aboveground biomass estimation in a subtropical region. Remote Sensing, 10(4). https://doi.org/10.3390/rs10040627spa
dc.relation.referencesGatti, A., Bertolini, A., Nasuti, C. y Carriero, F. (2015). Sentinel-2 Products Specification, 1-496.spa
dc.relation.referencesGhosh, S. M. y Behera, M. D. (2018). Aboveground biomass estimation using multi-sensor data synergy and machine learning algorithms in a dense tropical forest. Applied Geography, 96, 29-40. https://doi.org/10.1016/j.apgeog.2018.05.011spa
dc.relation.referencesHall-Beyer, M. (marzo de 2017). (b)GLCM Texture: A Tutorial v. 3.0. https://doi.org/10.1080/01431161.2016.1278314spa
dc.relation.referencesHernández-Ramos, J., De los Santos-Posadas, M., Valdez-Lazalde, R., Tamarit-Urias, C., Ángeles-Pérez, G., Hernández-Ramos, A. y Peduzzi, A. (2017). Biomasa aérea y factores de expansión en plantaciones forestales comerciales de Eucalyptus urophylla S. T. Blake. Agrociencia, 51, 921-938.spa
dc.relation.referencesHosseini, M. y Mcnairn, H. (2017). Using multi-polarization C- and L-band synthetic aperture radar to estimate biomass and soil moisture of wheat fields. International Journal of Applied Earth Observations and Geoinformation, 58, 50-64. https://doi.org/10.1016/j.jag.2017.01.006spa
dc.relation.referencesIdeam (2017). Indicadores climatologicos (promedios climatologicos). Recuperado de http://institucional.ideam.gov.co/JSP/1772spa
dc.relation.referencesKumar, L. y Mutanga, O. (2017). Remote Sensing of Above-Ground Biomass. Remote Sensing, 9(9), 935. https://doi.org/10.3390/rs9090935spa
dc.relation.referencesKuplich, T. M., Curran, P. J. y Atkinson, P. M. (2005). Relating SAR image texture to the biomass of regenerating tropical forests. International Journal of Remote Sensing, 26(21), 4829-4854.spa
dc.relation.referencesLiaw, A. y Wiener, M. (2002). Classification and Regression by randomForest. R News, 2, 18-22. https://doi.org/10.1177/154405910408300516spa
dc.relation.referencesLiu, B., Zhi, L., Liu, B., Yu, X., Zhang, P., Tan, X., … Zhi, L. (2018). AGB prediction by Sentinel-1 multitemporal data in central Italy with inetgration of ALOS2 and Sentinel. Journal of Applied Remote Sensing, 12(1). https://doi.org/10.1117/1.JRS.12spa
dc.relation.referencesLiu, K., Wang, J., Zeng, W. y Song, J. (2017). Comparison and evaluation of three methods for estimating forest above ground biomass using TM and GLAS data. Remote Sensing, 9(4). https://doi.org/10.3390/rs9040341spa
dc.relation.referencesLong, T., Pan, H., Dong, C., Qin, T. y Ma, P. (2019). Exploring the competitive evolution of global wood forest product trade based on complex network analysis. Physica A: Statistical Mechanics and Its Applications, 525, 1224-1232. https://doi.org/10.1016/J.PHYSA.2019.04.187spa
dc.relation.referencesLópez-Serrano, P. M., Sánchez, C. A. L., Solís-Moreno, R. y Corral-Rivas, J. J. (2016). Geospatial estimation of above ground forest biomass in the Sierra Madre Occidental in the state of Durango, Mexico. Forests, 7(3), 1-13. https://doi.org/10.3390/f7030070spa
dc.relation.referencesLu, X., Zheng, G., Miller, C. y Alvarado, E. (2017). Combining multi-source remotely sensed data and a process-based model for forest aboveground biomass updating. Sensors (Switzerland), 17(9). https://doi.org/10.3390/s17092062spa
dc.relation.referencesLuckman, A., Baker, J., Kuplich, T. M., da Costa Freitas Yanasse, C. y Frery, A. C. (1997). A study of the relationship between radar backscatter and regenerating tropical forest biomass for spaceborne SAR instruments. Remote Sensing of Environment, 60(1), 1-13. https://doi.org/10.1016/S0034-4257(96)00121-6spa
dc.relation.referencesMendoza Chichipe, M. E. (2018). Estimación de carbono en plantaciones de pinus patula mediante el análisis espectral de una imagen satelital sentinel-2, Distrito de Luya Viejo, Amazonas (Trabajo de grado, ingeniería ambiental). Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas. Chachapoyas, Perú. 49 p.spa
dc.relation.referencesMeyer, H., Lehnert, L. W., Wang, Y., Reudenbach, C., Nauss, T. y Bendix, J. (2017). From local spectral measurements to maps of vegetation cover and biomass on the Qinghai-Tibet-Plateau: Do we need hyperspectral information? International Journal of Applied Earth Observation and Geoinformation, 55, 21-31. https://doi.org/10.1016/j.jag.2016.10.001spa
dc.relation.referencesMüller-Wilm, U. (2016). Sen2Cor Configuration and User Manual, Ref. S2-PDGS-MPC-L2A- SUM-V2.3. European Space Agency.spa
dc.relation.referencesMuller, E. U., Kushlin, A. V., Linhares-Juvenal, T., Muchoney, D., Wertz-Kanounnikoff, S. y Henderson-Howat, D. (2018). The state of the world’s forests : forest pathways to sustainable development. FAOspa
dc.relation.referencesNavarro, G., Caballero, I., Silva, G., Parra, P.-C., Vázquez, Á. y Caldeira, R. (2017). Evaluation of forest fire on Madeira Island using Sentinel-2A MSI imagery. International Journal of Applied Earth Observation and Geoinformation, 58, 97-106. https://doi.org/10.1016/j.jag.2017.02.003spa
dc.relation.referencesOrtiz-Reyes, A. D., Valdez-Lazalde, J. R., los Santos-Posadas, D., Héctor, M., Ángeles-Pérez, G., Paz-Pellat, F. y Martínez-Trinidad, T. (2015). Inventario y cartografía de variables del bosque con datos derivados de LiDAR: comparación de métodos. Madera y Bosques, 21(3), 111-128.spa
dc.relation.referencesPoursanidis, D. y Chrysoulakis, N. (2017). Remote Sensing, natural hazards and the contribution of ESA Sentinels missions. Remote Sensing Applications: Society and Environment, 6, 25-38. https://doi.org/10.1016/j.rsase.2017.02.001spa
dc.relation.referencesPrabhakara, K., Hively, W. D. y McCarty, G. W. (2015). Evaluating the relationship between biomass, percent groundcover and remote sensing indices across six winter cover crop fields in Maryland, United States. International Journal of Applied Earth Observation and Geoinformation, 39, 88-102. https://doi.org/10.1016/j.jag.2015.03.002spa
dc.relation.referencesRodríguez-Veiga, P., Saatchi, S., Tansey, K. y Balzter, H. (2016). Magnitude, spatial distribution and uncertainty of forest biomass stocks in Mexico. Remote Sensing of Environment, 183, 265-281. https://doi.org/10.1016/j.rse.2016.06.004spa
dc.relation.referencesSandoval, M. (2009). Evaluación de las existencias y cambios de las superficies implantadas con Eucalyptus grandis en la zona de Humaitá, Departamento de Colón, Entre Ríos. Universidad Nacional de la Plata, Argentina. 28 p.spa
dc.relation.referencesShi, L. y Liu, S. (2017). Methods of Estimating Forest Biomass: A Review, Biomass Volume Estimation and Valorization for Energy. IntechOpen, i(tourism), 13. https://doi.org/http://dx.doi.org/10.5772/57353spa
dc.relation.referencesSmurfit Kappa Colombia (2015). Datos de inventario forestal en Cauca, Colombia.spa
dc.relation.referencesSolano, D., Vega, C., Eras, V. H. y Cueva, K. (2017). Generation of models allometric to determine aerial biomass at the species level, by the destructive method of low intensity for the layer of forest dry Pluviestacional of Ecuador. Revista Cedamaz, 4(1), 32-44.spa
dc.relation.referencesTeam, R (2015). RStudio: integrated development for R. RStudio, Inc. Boston. Recuperado de http://www.rstudio.comspa
dc.relation.referencesTrisasongko, B. H. y Paull, D. (2018). A review of remote sensing applications in tropical forestry with a particular emphasis in the plantation sector. Geocarto International, (September), 1-23. https://doi.org/10.1080/10106049.2018.1516245spa
dc.relation.referencesVafaei, S., Soosani, J., Adeli, K., Fadaei, H., Naghavi, H., Pham, T. D. y Bui, D. T. (2018). Improving accuracy estimation of Forest Aboveground Biomass based on incorporation of ALOS-2 PALSAR-2 and Sentinel-2A imagery and machine learning: A case study of the Hyrcanian forest area (Iran). Remote Sensing, 10(2). https://doi.org/10.3390/rs10020172spa
dc.relation.referencesValencia, C. (2017). Criterios e indicadores aplicables en la gestión sostenible de plantaciones forestales de ciclo corto en Colombia: una revisión. Recuperado de https://repository.javeriana.edu.co/handle/10554/20487#.W2M1yBCU67c.mendeleyspa
dc.relation.referencesVeloso, A., Mermoz, S., Bouvet, A., Le Toan, T., Planells, M., Dejoux, J. F. y Ceschia, E. (2017). Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sensing of Environment, 199, 415-426. https://doi.org/10.1016/j.rse.2017.07.015spa
dc.relation.referencesVilla S., C., Romero B., V. y Triana G., M. (2017). Estimación de carbono contenido en la biomasa de las coberturas boscosas pertenecientes a la microcuenca La Hermosa del municipio La Palma, Cundinamarca.spa
dc.relation.referencesVreugdenhil, M., Wagner, W., Bauer-Marschallinger, B., Pfeil, I., Teubner, I., Rüdiger, C. y Strauss, P. (2018). Sensitivity of Sentinel-1 backscatter to vegetation dynamics: An Austrian case study. Remote Sensing, 10(9), 1-19. https://doi.org/10.3390/rs10091396spa
dc.relation.referencesWang, L., Zhou, X., Zhu, X., Dong, Z. y Guo, W. (2016). Estimation of biomass in wheat using Random Forest regression algorithm and remote sensing data. The Crop Journal, 4(3), 212-219. https://doi.org/10.1016/j.cj.2016.01.008spa
dc.relation.referencesWu, C., Tao, H., Zhai, M., Lin, Y., Wang, K., Deng, J., … Yang, H. (2018). Using nonparametric modeling approaches and remote sensing imagery to estimate ecological welfare forest biomass. Journal of Forestry Research, 29(1), 151-161. https://doi.org/10.1007/s11676-017-0404-9spa
dc.relation.referencesZapata Duque, C. M. (2018). Dinámica del fósforo en el suelo y su relación con el crecimiento del Eucalyptus grandis para la región alto andina de Colombia (tesis doctoral). Universidad Nacional de Colombia, Sede Palmira.spa
dc.relation.referencesZhou, J., Yan Guo, R., Sun, M., Di, T. T., Wang, S., Zhai, J. y Zhao, Z. (2017). The Effects of GLCM parameters on LAI estimation using texture values from Quickbird Satellite Imagery. Scientific Reports, 7(1), 1-12. https://doi.org/10.1038/s41598-017-07951-wspa
dc.relation.referencesZumel, N. y Mount, J. (2014). Practical data science with R. Manning Publications Co.spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.relation.citationvolume23spa
dc.relation.citationissue1spa
dc.relation.citationeditionNúm. 1 , Año 2020 : Enero-Juniospa
dc.relation.ispartofjournalColombia forestalspa
dc.identifier.eissn2256-201X
dc.identifier.urlhttps://doi.org/10.14483/2256201X.14854
dc.relation.citationstartpage79
dc.relation.citationendpage93
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/14854/15442
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/14854/15728
dc.type.contentTextspa
dspace.entity.typePublicationspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Colombia forestal - 2020
Excepto si se señala otra cosa, la licencia del ítem se describe como Colombia forestal - 2020