Mostrar el registro sencillo del ítem

dc.contributor.authorVallejo Quintero, Victoria Eugeniaspa
dc.contributor.authorAfanador-Barajas, Laura Natalispa
dc.contributor.authorCoca Peña, Dainer Andrésspa
dc.contributor.authorVargas Giraldo, Andrés Felipespa
dc.contributor.authorBautista Murcia, María Fernandaspa
dc.contributor.authorMendoza Hernández, Angélicaspa
dc.date.accessioned2020-01-01 00:00:00
dc.date.accessioned2023-09-19T21:10:22Z
dc.date.available2020-01-01 00:00:00
dc.date.available2023-09-19T21:10:22Z
dc.date.issued2020-01-01
dc.identifier.issn0120-0739
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/44470
dc.description.abstractEl objetivo de esta investigación fue evaluar la calidad de suelos mediante índices de calidad constituidos por tres conjuntos mínimos de datos (tres, cinco y seis indicadores), en cinco agroecosistemas con cultivo de café (Coffea arabica) orgánico, guatila o chayote (Sechium edule), policultivo (Anthurium andraeanum, Manihot esculenta, Musa balbisiana o Zea mays), pastizal convencional (Pennisetum clandestinum y Cynodon dactylon) y Guaduales (Guadua angustifolia), en el municipio de Cachipay (Cundinamarca). Durante el muestreo se seleccionaron aleatoriamente dos áreas representativas para cada agroecosistema y se delimitaron dos cuadrantes (2.5 × 2.5 m) de los que se tomaron dos muestras compuestas de suelo (20 submuestras; profundidad de 0-15 cm). Se evidenció que independiente del conjunto mínimo de datos empleado, los menores índices de calidad de suelos lo presentaron el pastizal convencional y el cultivo de guatila. Los valores mayores del índice de calidad correspondieron al policultivo, guaduales y cultivo de café. Se concluye que el uso de variables como la densidad aparente, el índice de estabilidad, el pH, la actividad deshidrogenasa, el recuento de heterótrofos y las bacterias solubilizadoras de fosfato son indicadores relevantes que permiten evaluar adecuadamente la calidad edáfica en agroecosistemas.spa
dc.description.abstractThis study aimed to evaluate the soil quality through quality indexes consisting of three minimum data sets (3, 5 and 6 indicators) in five agroecosystems with organic coffee (Coffea arabica), guatila or chayote (Sechium edule), polyculture (Anthurium andraeanum, Manihot esculenta, Musa balbisiana o Zea mays), conventional pasture (Pennisetum clandestinum y Cynodon dactylon) and Guadua (Guadua angustifolia), in the municipality of Cachipay (Cundinamarca). During the sampling, two representative areas were randomly selected for each agroecosystem and two quadrants (2.5 x 2.5 m) were delimited, from which two composite samples of soil were taken (20 subsamples, depth of 0-15 cm). It was evidenced that independent of the minimum set of data used, the lowest soil quality indexes were presented by the conventional pasture and the guatila culture. The highest values of the quality index corresponded to polyculture, forest and organic coffee cultivation. In conclusion, the use of variables such as bulk density, stability index, pH, dehydrogenase activity, heterotrophic density and solubilized phosphate bacteria are important indicators to measure the soil quality in agroecosystems.eng
dc.format.mimetypeapplication/pdfspa
dc.format.mimetypetext/xmlspa
dc.language.isospaspa
dc.publisherUniversidad Distrital Francisco José de Caldasspa
dc.rightsColombia forestal - 2020spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttps://revistas.udistrital.edu.co/index.php/colfor/article/view/14856spa
dc.subjectAgroecologyeng
dc.subjectCachipayeng
dc.subjectsoil quality indexeng
dc.subjectsoil propertieseng
dc.subjectsoil degradationeng
dc.subjectagroecologíaspa
dc.subjectCachipayspa
dc.subjectdegradación del suelospa
dc.subjectíndices de calidadspa
dc.subjectpropiedades del suelospa
dc.titleEvaluación de la calidad de suelos en agroecosistemas de Colombia a través de la selección de un conjunto mínimo de datosspa
dc.typeArtículo de revistaspa
dc.identifier.doi10.14483/2256201X.14856
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.localJournal articleeng
dc.title.translatedEvaluation of soil quality in agroecosystems of Colombia through the selection of a minimum data seteng
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.relation.referencesAndrews, S., Karlen, D. y Mitchell., J. (2002). A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agriculture ecosystems & environment, 90 (1), 25-45. https://doi.org/10.1016/S0167-8809(01)00174-8spa
dc.relation.referencesAshworth, A., DeBruyn, J., Allen, F., Radosevich, M. y Owens, P. (2017). Microbial community structure is affected by cropping sequences and poultry litter under long-term no-tillage. Soil Biology Biochemistry, 114, 210-219. https://doi.org/10.1016/j.soilbio.2017.07.019spa
dc.relation.referencesAskari M. y Holden, N. (2014). Indices for quantitative evaluation of soil quality under grassland management. Geoderma, 230, 131-142. https://doi.org/10.1016/j.geoderma.2014.04.019spa
dc.relation.referencesCantú, M., Becker, A., Bedano, J. y Schiavo, H. (2007). Evaluación de la calidad de suelos mediante el uso de indicadores e índices. Ciencia del Suelo, 25(2), 173-178. Recuperado de http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1850-20672007000200008&lng=es&tlng=esspa
dc.relation.referencesCasida, L., Klein, D. y Santoro, T. (1964). Soil dehydrogenase activity. Soil Science, 98(6), 371-376. https://doi.org/10.1097/00010694-196412000-00004spa
dc.relation.referencesChen, Y., Wang, H., Zhou, J., Xing, L., Zhu, B., Zhao, Y. y Chen, X. (2013). Minimum Data Set for Assessing Soil Quality in Farmland of Northeast China. Pedosphere, 23(5), 564-576. https://doi.org/10.1016/S1002-0160(13)60050-8spa
dc.relation.referencesCorrales, L., Arévalo, Z. y Moreno, V. (2014). Solubilización de fosfatos: una función microbiana importante en el desarrollo vegetal. Nova, 12(21), 68-79. Recuperado de http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1794-24702014000100006&nrm=isospa
dc.relation.referencesCubillos, A., Vallejo, V., Arbeli, Z., Terán, W., Dick, R., Molina, C., Molina, E. y Roldan, F. (2016). Effect of the conversion of conventional pasture to intensive silvopastoral systems on edaphic bacterial and ammonia oxidizer communities in Colombia. European Journal Soil Biology, 72, 42-50. https://doi.org/10.1016/j.ejsobi.2015.12.003spa
dc.relation.referencesDoran, J. y Parkin, T. (1994). Defining and assessing soil quality. En: J. W.Doran, D. C. Coleman, D. F. Bezdicek y B. A. Stewart (eds.), Defining Soil Quality for a Sustainable Environment (pp. 3-21). SSSA Special Publication Number 35.. Madison, Wisconsin, EE. UU.: Soil Science Society of America Inc. https://doi.org/10.2136/sssaspecpub35.c1spa
dc.relation.referencesEOT Cachopay (2008). Esquema de ordenamiento territorial Cachipay Cundinamarca 2008-2011. 417 p. Recuperado de http://cdim.esap.edu.co/BancoConocimiento/C/cachipay_-_cundinamarca_-_eot_-_2008/cachipay_-_cundinamarca_-_eot_-_2008.aspspa
dc.relation.referencesEstrada-Herrera, I., Hidalgo-Moreno, C., Guzmán-Plazola, R., Almaraz Suárez, J., Navarro-Garza, H. y Etchevers-Barra, J. (2017). Indicadores de calidad de suelo para evaluar su fertilidad. Agrociencia, 51, 813-831. Recuperado de http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952017000800813&nrm=isospa
dc.relation.referencesFernandes, J., Gamero, C., Rodrigues, J. y Mirás-Avalos, J. (2011). Determination of the quality index of a Paleudult under sunflower culture and different management systems. Soil and Tillage Research, 112(2), 167-174. https://doi.org/10.1016/j.still.2011.01.001spa
dc.relation.referencesFlores, L. y Alcalá, J. (2010). Manual de procedimientos analíticos: laboratorio de física de suelos. Universidad Nacional Autónoma de México. Instituto de Geología. 56 p. Recuperado de http://www.geologia.unam.mx:8080/igl/deptos/edafo/lfs/MANUAL %20DEL %20LABORATORO %20DE %20FISICA %20DE %20SUELOS1.pdfspa
dc.relation.referencesGarcía, Y., Ramírez, W. y Sánchez, S. (2012). Indicadores de la calidad de los suelos: una nueva manera de evaluar este recurso. Pastos y Forrajes, 35(2), 125-138. Recuperado de http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03942012000200001&lng=es&tlng=esspa
dc.relation.referencesGhaemi, M., Astaraei, A., Emami, H., Nassiri-Mahalati, M. y Sanaeinejad, S. (2014). Determining soil indicators for soil sustainability assessment using principal component analysis of Astan Qudseast of Mashhad- Iran. Journal of Soil Science and Plant Nutrition, 14(4), 987-1004. https://doi.org/10.4067/S0718-95162014005000077spa
dc.relation.referencesGlover, J., Reganold, J.y Andrews, P. (2000). Systematic method for rating soil quality of conventional, organic, and integrated apple orchards in Washington State. Agriculture Ecosystems Environment, 80(1-2), 29-45. https://doi.org/10.1016/S0167-8809(00)00131-6spa
dc.relation.referencesGoodfellow, M. y Williams, S. (1983). Ecology of actinomycetes. Annual Review of Microbiology, 37, 189-216. https://doi.org/10.1146/annurev.mi.37.100183.001201spa
dc.relation.referencesGuo, L., Sun, Z., Ouyang, Z., Han, D. y Li, F. (2017). A comparison of soil quality evaluation methods for Fluvisol along the lower Yellow River. Catena, 152, 135-143. https://doi.org/10.1016/j.catena.2017.01.015spa
dc.relation.referencesGutiérrez, J., Cardona, Q. y Monsalve, O. (2017). Potencial en el uso de las propiedades químicas como indicadores de calidad de suelo. Una revisión. Revista Colombiana Ciencias Horticolas, 11(2), 450-458. https://doi.org/10.17584/rcch.2017v11i2.5719spa
dc.relation.referencesHammer, Ø., Harper, D. y Ryan, P. (2012). PAST Paleontological Statistics version 2.16. Software package for education and data analysis. Paleontología Eletrónica, 4(1), 1-9. Recuperado de http://folk.uio.no/ohammer/past/spa
dc.relation.referencesKarlen, D. y Stott, D. (1994). A framework for evaluating physical and chemical indicators of soil quality. En: J. W. Doran, D. C. Coleman, D. F. Bezdicek y B.A. Stewart, (eds.), Defining Soil Quality for a Sustainable Environment (pp. 53-72). Madison, SSSA.spa
dc.relation.referencesLê, S., Josse, J. y Husson, F. (2008). FactoMine R: An R Package for Multivariate Analysis. Journal of statistical software, 25(1), 1-18. https://doi.org/10.18637/jss.v025.i01spa
dc.relation.referencesLima, A., Brussaard, L., Totola, M., Hoogmoed, W. y Goede, R. (2013). A functional evaluation of three indicators sets for assessing soil quality. Applied Soil Ecology, 64, 194-200. https://doi.org/10.1016/j.apsoil.2012.12.009spa
dc.relation.referencesLiu, Z., Zhou, W., Shen, J., Li, S., Liang, G., Wang, X., Sun, J. y Al, C. (2014). Soil quality assessment of acid sulfate paddy soils with different productivities in Guangdong Province, China. Journal of Integrative Agriculture, 13(1), 177-186. https://doi.org/10.1016/S2095-3119(13)60594-8spa
dc.relation.referencesMandal, U., Warrington, D., Bhardwaj, A., Bar-Tal, A., Kautsky, L., Minz, D. y Levy, G. (2008). Evaluating impact of irrigation water quality on a calcareous clay soil using principal component analysis. Geoderma, 144(1-2), 189-197. https://doi.org/10.1016/J.geoderma.2007.11.014spa
dc.relation.referencesMasto, R., Chhonkar, P., Singh, D. y Patra, A. (2007). Soil quality response to long-term nutrient and crop management on a semi-arid Inceptisol. Agriculture Ecosystems & Environment, 118(1-4), 130-142. https://doi.org/10.1016/j.agee.2006.05.008spa
dc.relation.referencesMishra, G., Marzaioli, R., Giri, K. y Pandey, S. (2018). Soil quality assessment across different stands in tropical moist deciduous forests of Nagaland, India. Journal of Forestry Research, 1-7. https://doi.org/10.1007/s11676-018-0720-8spa
dc.relation.referencesMuñoz-Rojas, M. (2018). Soil quality indicators: critical tools in ecosystem restoration. Current Opinion in Environmental Science & Health, 5, 47-52. https://doi.org/10.1016/j.coesh.2018.04.007spa
dc.relation.referencesMursec, M., Leveque, L., Chaussod, R. y Curmi, P. (2018). The impact of drip irrigation on soil quality in sloping orchards developed on marl - a case study. Plant Soil Environment, 64, 20-25. https://doi.org/10.17221/623/2017-psespa
dc.relation.referencesNabiollahi, K., Taghizadeh-Mehrjardi, R., Kerry, R. y Moradian, S. (2017). Assessment of soil quality indices for salt-affected agricultural land in Kurdistan Province, Iran. Ecological Indicators, 83, 482-494. https://doi.org/10.1016/j.ecolind.2017.08.001spa
dc.relation.referencesNautiyal, S. (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters, 170(1), 265-270. https://doi.org/10.1016/S0378-1097(98)00555-2spa
dc.relation.referencesNavas, M., Benito, M., Rodríguez, I. y Masaguer, A. (2011). Effect of five forage legume covers on soil quality at the Eastern plains of Venezuela. Applied Soil Ecology, 49, 242-249. https://doi.org/10.1016/j.apsoil.2011.04.017spa
dc.relation.referencesNosrati, K. (2013). Assessing soil quality indicator under different land use and soil erosion using multivariate statistical techniques. Environmental Monitoring and Assessment, 185(4), 2895-2907. https://doi.org/10.1007/s10661-012-2758-yspa
dc.relation.referencesObade, V. y Lal, R. (2016). Towards a standard technique for soil quality assessment. Geoderma, 265, 96-102. https://doi.org/10.1016/j.geoderma.2015.11.023spa
dc.relation.referencesPuglisi E., Del Re, A., Rao, M. y Gianfreda, L. (2006). Development and validation of numerical indexes integrating enzyme activities of soils. Soil Biology and Biochemistry, 38, 1673-1681. https://doi.org/10.1016/j.soilbio.2005.11.021spa
dc.relation.referencesPulido, M., Schnabel, S., Contador, F., Lozano-Parra, J y Gómez-Gutiérrez, A. (2017). Selecting indicators for assessing soil quality and degradation in rangelands of Extremadura (SW Spain). Ecological Indicators, 74, 49-61. https://doi.org/10.1016/j.ecolind.2016.11.016spa
dc.relation.referencesR Development Core Team (2016). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. Recuperado de https://www.R-project.org/spa
dc.relation.referencesRaiesi, F. y Salek-Gilani, S. (2018). The potential activity of soil extracellular enzymes as an indicator for ecological restoration of rangeland soils after agricultural abandonment. Applied Soil Ecology, 126, 140-147. https://doi.org/10.1016/j.apsoil.2018.02.022spa
dc.relation.referencesRahmanipour, F., Marzaioli, R., Bahrami, H., Fereidouni, Z. y Bandarabadi, S. (2014). Assessment of soil quality indices in agricultural lands of Qazvin Province, Iran. Ecological Indicators, 40, 19-26. https://doi.org/10.1016/j.ecolind.2013.12.003spa
dc.relation.referencesRamette, A. (2007). Multivariate analyses in microbial ecology. FEMS Microbiology Ecology, 62, 142-160. https://doi.org/10.1111/j.1574-6941.2007.00375.xspa
dc.relation.referencesRezaei, S., Gilkes, J. y Andrews, S. (2006). A minimum data set for assessing soil quality in rangelands. Geoderma, 136(1-2), 229-234. https://doi.org/10.1016/j.geoderma.2006.03.021spa
dc.relation.referencesSingh, A., Bordoloi, L., Kumar, M., Hazarika, S. y Parmar, B. (2014). Land use impact on soil quality in eastern Himalayan region of India. Environmental Monitoring Assessment, 186(4), 2013-2024. https://doi.org/10.1007/s10661-013-3514-7spa
dc.relation.referencesSchoenholtz, S., Miegroet, H. V. y Burger, J. (2000). A review of chemical and physical properties as indicators of forest soil quality: challenges and opportunities. Forest Ecology and Management, 138(1-3), 335-356. https://doi.org/10.1016/S0378-1127(00)00423-0spa
dc.relation.referencesVallejo V. (2013). Importancia y utilidad de la evaluación de la calidad de suelos mediante el componente microbiano: experiencias en sistemas silvopastoriles. Colombia Forestal, 16(1), 83-99. https://doi.org/10.14483/udistrital.jour.colomb.for.2013.1.a06spa
dc.relation.referencesVallejo, V., Gómez, M., Cubillos, A. y Roldán, F. (2011). Effect of land use on the density of nitrifying and denitrifying bacteria in the Colombian Coffee Region. Agronomía Colombiana, 29, 455-463. Recuperado de http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-99652011000300015&lng=es&tlng=.spa
dc.relation.referencesVallejo, V., Arbeli, Z., Terán, W., Lorenz, N., Dick, R. y Roldan, F. (2012). Effect of land management and Prosopis juliflora (Sw.) DC trees on soil microbial community and enzymatic activities in intensive silvopastoral systems of Colombia. Agriculture Ecosystems & Environment, 150, 139-148. https://doi.org/10.1016/j.agee.2012.01.022spa
dc.relation.referencesVallejo, V., Afanador, L., Hernández, M. y Parra, D. (2018). Efecto de la implementación de diferentes sistemas agrícolas sobre la calidad del suelo en el municipio de Cachipay, Cundinamarca, Colombia. Bioagro, 30(1), 27-38.spa
dc.relation.referencesWilson, M. G. (2017). Manual de indicadores de calidad del suelo para las ecorregiones de Argentina. Buenos Aires: Ediciones INTA. p. 285. Recuperado de https://inta.gob.ar/sites/default/files/manual_ics_final.pdfspa
dc.relation.referencesWymore, A. W. (1993). Model-Based Systems Engineering: An introduction to the mathematical theory of discrete systems and to the Tricotyledon theory of system design. Boca Raton, Florida, EE. UU.: CRC Press. 710 p.spa
dc.relation.referencesYu, P., Liu, S., Zhang, L., Li, Q. y Zhou, D. (2018). Selecting the minimum data set and quantitative soil quality indexing of alkaline soils under different land uses in northeastern China. Science of the Total Environment, 616-617, 564-571. https://doi.org/10.1016/j.scitotenv.2017.10.301spa
dc.relation.referencesZhang, G., Bai, J., Xi, M., Zhao Q., Lu, Q. y Jia, J. (2016). Soil quality assessment of coastal wetlands in the Yellow River Delta of China based on the minimum data set. Ecological Indicators, 66, 458-466. https://doi.org/10.1016/j.ecolind.2016.01.046spa
dc.relation.referencesZhijun, H., Selvalakshmi, S., Vasu, D., Liu, Q., Cheng, H., Guo, F. y Ma, X. (2018). Identification of indicators for evaluating and monitoring the effects of Chinese fir monoculture plantations on soil quality. Ecological Indicators, 93, 547-554. https://doi.org/10.1016/j.ecolind.2018.05.034spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.relation.citationvolume23spa
dc.relation.citationissue1spa
dc.relation.citationeditionNúm. 1 , Año 2020 : Enero-Juniospa
dc.relation.ispartofjournalColombia forestalspa
dc.identifier.eissn2256-201X
dc.identifier.urlhttps://doi.org/10.14483/2256201X.14856
dc.relation.citationstartpage35
dc.relation.citationendpage50
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/14856/15439
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/14856/15725
dc.type.contentTextspa
dspace.entity.typePublicationspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Colombia forestal - 2020
Excepto si se señala otra cosa, la licencia del ítem se describe como Colombia forestal - 2020