Mostrar el registro sencillo del ítem

dc.contributor.authorRubiano Calderón, Kristian Davidspa
dc.contributor.authorMoreno Barreto, Jesús Estebanspa
dc.date.accessioned2020-07-01 00:00:00
dc.date.accessioned2023-09-19T21:10:27Z
dc.date.available2020-07-01 00:00:00
dc.date.available2023-09-19T21:10:27Z
dc.date.issued2020-07-01
dc.identifier.issn0120-0739
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/44481
dc.description.abstractEl incremento del arbolado urbano es una práctica cada vez más común en el mundo dada su importancia en la prestación de servicios ambientales, aunque su establecimiento se realiza bajo condiciones de espacio variables que pueden impactar su desarrollo. En este estudio se analizó la variación de rasgos funcionales de seis especies del arbolado de Bogotá en relación con distintos métodos de emplazamientos usados en la ciudad. Los resultados mostraron que no todas las especies reaccionaron de la misma forma frente a las condiciones de sellado del suelo, algunas parecen mejor adaptadas al aumento de las superficies impermeables, mientras otra parece afectarse y las demás no presentaron cambios significativos entre los distintos emplazamientos. Estos hallazgos resaltan la importancia de los rasgos funcionales de las especies, en áreas urbanas, como una herramienta para reconocer su respuesta ante las estrategias de manejo, buscando maximizar su desarrollo y la prestación de servicios ambientales.spa
dc.description.abstractThe increase in urban trees is an progressively common practice around the world given its importance in the provision of different environmental services, although its establishment is carried out under variable space conditions that may impact its development. In this study, the variation of functional traits of six species of the woodland of Bogotá in relation to different methods of sites used in the city was analyzed. The results showed that not all species responded in the same way to the sealing conditions of the soils, in which some benefited from the increase in impervious surfaces, some were affected and others did not show significant changes between different locations. These findings highlight the importance of recognizing the functional component of species in urban areas as a tool for management, seeking to maximize their development and the offer of environmental services.eng
dc.format.mimetypeapplication/pdfspa
dc.format.mimetypetext/xmlspa
dc.language.isospaspa
dc.publisherUniversidad Distrital Francisco José de Caldasspa
dc.rightsColombia forestal - 2020spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttps://revistas.udistrital.edu.co/index.php/colfor/article/view/15811spa
dc.subjectUrban treeseng
dc.subjectFunctional traitseng
dc.subjectImpervious surfaceseng
dc.subjectArbolado urbanospa
dc.subjectRasgos funcionalesspa
dc.subjectSuperficies impermeablesspa
dc.titleEfecto del método de emplazamiento en la respuesta funcional de seis especies arbóreas de Bogotáspa
dc.typeArtículo de revistaspa
dc.identifier.doi10.14483/2256201X.15811
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.localJournal articleeng
dc.title.translatedEffect of the tree-planting conditions on the functional response of six arboreal species of Bogotáeng
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.relation.referencesAlbert, C. H., Thuiller, W., Yoccoz, N. G., Soudant, A., Boucher, F., Saccone, P. y Lavorel, S. (2010). Intraspecific functional variability: Extent, structure and sources of variation. Journal of Ecology, 98, 604-613. https://doi.org/10.1111/j.1365-2745.2010.01651.x Barrera-Cataño, J., Contreras-Rodríguez, S., Garzón-Yepes, N., Moreno-Cárdenas, A. y Montoya-Villarreal, S. (2010). Manual para la restauración ecológica de los ecosistemas disturbados del Distrito Capital. Bogotá: Secretaría Distrital de Ambiente; Pontificia Universidad Javeriana. Bolund, P. y Hunhammar, S. (1999). Ecosystem services in urban areas. Ecological Economics, 29(2), 293-301. https://doi.org/10.1016/s0921-8009(99)00013-0 Breuste, J., Niemelä, J. y Snep, R. P. H. (2008). Applying landscape ecological principles in urban environments. Landscape Ecology, 23(10), 1139-1142. https://doi.org/10.1007/s10980-008-9273-0 Bühler, O., Kristoffersen, P. y Larsen, S. U. (2007). Growth of street trees in Copenhagen with emphasis on the effect of different establishment concepts. Arboriculture & Urban Forestry, 33(5), 330-337. Burkhard, B., Kroll, F., Nedkov, S. y Müller, F. (2012). Mapping ecosystem service supply, demand and budgets. Ecological Indicators, 21, 17-29. https://doi.org/10.1016/j.ecolind.2011.06.019 Calfapietra, C., Peñuelas, J. y Niinemets, Ü. (2015). Urban plant physiology: adaptation-mitigation strategies under permanent stress. Trends in Plant Science, 20(2), 72-75. https://doi.org/10.1016/j.tplants.2014.11.001 Carreras, H. A., Cañas, M. S. y Pignata, M. L. (1996). Differences in responses to urban air pollutants by Ligustrum lucidum Ait. and Ligustrum lucidum Ait. f. tricolor (Rehd.) Rehd. Environmental Pollution, 93(2), 211-218. https://doi.org/10.1016/0269-7491(96)00014-0 Celestian, S. y Martin, C. (2005). Effects of parking lot location on size and physiology of four southwestern US landscape trees. Journal of Arboriculture, 31(4), 191-197. Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G. y Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12(4), 351-366. https://doi.org/10.1111/j.1461-0248.2009.01285.x Chen, Y., Wang, X., Jiang, B., Yang, N. y Li, L. (2016). Pavement induced soil warming accelerates leaf budburst of ash trees. Urban Forestry & Urban Greening, 16, 36-42. https://doi.org/10.1016/j.ufug.2016.01.014 Chen, Y., Wang, X., Jiang, B., Wen, Z., Yang, N. y Li, L. (2017). Tree survival and growth are impacted by increased surface temperature on paved land. Landscape & Urban Planning, 162, 68-79. https://doi.org/10.1016/j.landurbplan.2017.02.001 Cornelissen, J. H. C., Lavorel, S., Garnier, E., Díaz, S., Buchmann, N., Gurvich, D. E., Reich, P. B., ter Steege, H., Morgan, H. D., van der Heijden, M. G. A., Pausas, J. G. y Poorter, H. (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51(4), 335-380. https://doi.org/10.1071/bt02124 Craul, P. J. (1992). Urban Soil in Landscape Design. Nueva York: Wiley. Cristancho, C. y Triana, E. (2018). Análisis demográfico y proyecciones poblacionales de Bogotá. Bogotá: Secretaría Distrital de Planeación. http://www.sdp.gov.co/sites/default/files/demografia_proyecciones_2017_0_0.pdf Díaz, S., Lavorel, S., de Bello, F., Quétier, F., Grigulis, K. y Robson, T. M. (2007). Incorporating plant functional diversity effects in ecosystem service assessments. PNAS, 104(52), 20684-20689. https://doi.org/10.1073/pnas.0704716104 Diéguez, U., Barrio, M., Castedo, F., Ruíz, A. D., Álvarez, M.F., Álvarez, J. G. y Rojo, A. (2003). Dendrometría. Madrid: Paraninfo. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. y Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development, 29(1), 185-212. https://doi.org/10.1051/agro:2008021 Farrell, C., Szota, C. y Arndt, S. K. (2015). Urban Plantings: 'Living Laboratories' for Climate Change Response. Trends in Plant Science, 20(10), 597-599. https://doi.org/10.1016/j.tplants.2015.08.006 Ferrini, F. y Baietto, M. (2007). Effect of compost-amended backfill and paved surface on leaf parameters and physiology of Norway maple (Acer planatoides L.). Arboriculture & Urban Forestry, 33(6), 386-391. Freschet, G. T., Cornelissen, J. H. C., van Logtestijn, R. S. P. y Aerts, R. (2010). Evidence of the 'plant economics spectrum' in a subarctic flora. Journal of Ecology, 98(2), 362-373. https://doi.org/10.1111/j.1365-2745.2009.01615.x Godefroid, S. y Koedam, N. (2007). Urban plant species patterns are highly driven by density and function of built-up areas. Landscape Ecology, 22(8), 1227-1239. https://doi.org/10.1007/s10980-007-9102-x Gómez-Baggethun, E. y Barton, D. N. (2013). Classifying and valuing ecosystem services for urban planning. Ecological Economics, 86, 235-245. https://doi.org/10.1016/j.ecolecon.2012.08.019 Goodness, J., Andersson, E., Anderson, P. M. y Elmqvist, T. (2016). Exploring the links between functional traits and cultural ecosystem services to enhance urban ecosystem management. Ecological Indicators, 70, 597-605. https://doi.org/10.1016/j.ecolind.2016.02.031 Grabosky, J. y Gilman, E. (2004). Measurement and prediction of tree growth reduction from tree planting space design in established parking lots. Journal of Arboriculture, 30(3), 154-164. Grote, R., Samson, R., Alonso, R., Amorim, J. H., Cariñanos, P., Churkina, G., Fares, S., Thiec, D. L., Niinemets, Ü., Mikkelsen, T.N., Paoletti, E., Tiwary, A. y Calfapietra, C. (2016). Functional traits of urban trees: air pollution mitigation potential. Frontiers in Ecology & the Environment, 14(10), 543-550. https://doi.org/10.1002/fee.1426 Jardín Botánico José Celestino Mutis y Departamento Administrativo Nacional de Estadística (2006). Manual del censista y auxiliar censo del árbol urbano de Bogotá D.C. Bogotá: Jardín Botánico José Celestino Mutis. Just, M. G., Frank, S. D. y Dale, A. G. (2018). Impervious surface thresholds for urban tree site selection. Urban Forestry & Urban Greening, 34, 141-146. https://doi.org/10.1016/j.ufug.2018.06.008 Kalusová, V., Čeplová, N. y Lososová, Z. (2017). Which traits influence the frequency of plant species occurrence in urban habitat types? Urban Ecosystems, 20(1), 65-75. https://doi.org/10.1007/s11252-016-0588-3 Kay, M. y Wobbrock, J. (2019). ARTool: Aligned Rank Transform for Nonparametric Factorial Anovas. R package version 0.10.6. Konarska, J., Uddling, J., Holmer, B., Lutz, M., Lindberg, F., Pleijel, H. y Thorsson, S. (2016). Transpiration of urban trees and its cooling effect in a high latitude city. International Journal of Biometeorology, 60(1), 159-172. https://doi.org/10.1007/s00484-015-1014-x Lavorel, S., Grigulis, K., Lamarque, P., Colace, M. P., Garden, D., Girel, J., Pellet, G. y Douzet, R. (2011). Using plant functional traits to understand the landscape distribution of multiple ecosystem services. Journal of Ecology, 99(1), 135-14. https://doi.org/10.1111/j.1365-2745.2010.01753.x Lenth, R. (2019). Estimated Marginal Means, aka Least-Squares Means. R package version 1.4.2. Lovell, S. T. y Taylor, J. R. (2013). Supplying urban ecosystem services through multifunctional green infrastructure in the United States. Landscape Ecology, 28, 1447-1463. https://doi.org/10.1007/s10980-013-9912-y McClung, T. e Ibáñez, I. (2018). Quantifying the synergistic effects of impervious surface and drought on radial tree growth. Urban Ecosystems, 21, 147-155. https://doi.org/10.1007/s11252-017-0699-5 Moreno-Barreto, E. y Rubiano, K. (2018). Aproximación al uso de rasgos funcionales y gradientes ambientales para seis especies del arbolado urbano de la ciudad de Bogotá D.C. Bogotá: Jardín Botánico José Celestino Mutis (no publicado). Mullaney, J., Lucke, T. y Trueman, S. J. (2015). A review of benefits and challenges in growing street trees in paved urban environments. Landscape & Urban Planning, 134, 157-166. https://doi.org/10.1016/j.landurbplan.2014.10.013 Mullaney, J., Trueman, S. J., Lucke, T. y Bai, S. H. (2015). The effect of permeable pavements with an underlying base layer on the ecophysiological status of urban trees. Urban Forestry & Urban Greening, 14(3), 686-693. https://doi.org/10.1016/j.ufug.2015.06.008 Núñez-Flórez, R., Pérez-Gómez, R. y Fernández-Méndez, F. (2019). Functional diversity criteria for selecting urban trees. Urban Forestry & Urban Greening, 28, 251-266. https://doi.org/10.1016/j.ufug.2019.01.005 Ocampo, V. (2019). Factors affecting the biodiversity of Heteroptera on trees in urban green areas of Bogotá, Colombia (Tesis de maestría). Universitat de Barcelona, Barcelona, España. Ordóñez, J. C., Van Bodegom, P. M., Witte, J. P.M., Wright, I. J. Reich, P. B. y Aerts, R. (2009). A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecology and Biogeography, 18(2), 137-149. https://doi.org/10.1111/j.1466-8238.2008.00441.x Ow, L.F. y Ghosh, S. (2017). Growth of street trees in urban ecosystems: Structural cells and structural soil. Journal of Urban Ecology, 3(1), 1-7. https://doi.org/10.1093/jue/jux017 Pataki, D. E., McCarthy, H. R., Gillespie, T., Jenerette, G. D. y Pincetl, S. (2013). A trait-based ecology of the Los Angeles urban forest. Ecosphere, 4(6), 1-20. https://doi.org/10.1890/es13-00017.1 Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., y Jaureguiberry, P., Bret-Harte, M. S. S., Cornwell, W. K. K., Craine, J. M. M., Gurvich, D. E. E., Urcelay, C., Veneklaas, E. J. J., Reich, P. B. B., Poorter, L., Wright, I. J. J., Ray, P., Enrico, L., Pausas, J. G., de Vos, A. C., Buchmann, N., Funes, G., Quétier, F., Hodgson, J. G., Thompson, K., Morgan, H. D., ter Steege, H., van der Heijden, M. G. A., Sack, L., Blonder, B., Poschlod, P., Vaieretti, M. V., Conti, G., Staver, A. C., Aquino, S. y Cornelissen, J. H. C. (2013). New handbook for standardized measurement of plant functional traits worldwide. Australian Journal of Botany, 61(3), 167-234. https://doi.org/10.1071/bt12225 Pretzsch, H., Biber, P., Uhl, E., Dahlhausen, J., Rötzer, T., Caldentey, J., Koike, T., van Con, T., Chavanne, A., Seifert, T., du Toit, B., Farnden, C. y Pauleit, S. (2015). Crown size and growing space requirement of common tree species in urban centres, parks, and forests. Urban Forests & Urban Greening, 14(3), 466-479. https://doi.org/10.1016/j.ufug.2015. 04.006 R Core Team (2019). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. https://www.R-project.org Salgado-Negret, B. (ed.) (2015). La ecología funcional como aproximación al estudio, manejo y conservación de la biodiversidad: protocolos y aplicaciones. Bogotá: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Sand, E., Konarska, J., Howe, A. W., Andersson-Sköld, Y., Moldan, F., Pleijel, H. y Uddling, J. (2018). Effects of ground surface permeability on the growth of urban linden trees. Urban Ecosystems, 21, 691-696. https://doi.org/10.1007/s11252-018-0750-1 Sanders, J. R. y Grabosky, J. (2014). 20 years later: Does reduced soil area change overall tree growth? Urban Forestry & Urban Greening, 13(2), 295-303. https://doi.org/10.1016/j.ufug.2013.12.006 Sanders, J. R., Grabosky, J. y Cowie, P. (2013). Establishing maximum size expectations for urban trees with regard to designed space. Arboriculture & Urban Forestry, 39(2), 68-73. Schneider, C. A., Rasband, W. S. y Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671. https://doi.org/10.1038/nmeth.2089 Schwarz, N., Moretti, M., Bugalho, M. N., Davies, Z. G., Haase, D., Hack, J., Hof, A., Melero, Y., Pett, T. J. y Knapp, S. (2017). Understanding biodiversity-ecosystem service relationships in urban areas: A comprehensive literature review. Ecosystem Services, 27, 161-171. https://doi.org/10.1016/j.ecoser.2017.08.014 Simpson, W. (1993). Specific Gravity, Moisture Content, and Density Relationship for Wood. U.S. Madison, EE. UU.: Department of Agriculture, Forest Service, Forest Products Laboratory. Song, Y., Li, F., Wang, X., Xu, C., Zhang, J., Liu, X. y Zhang, H. (2015). The effects of urban impervious surfaces on eco-physiological characteristics of Ginkgo biloba: A case study from Beijing, China. Urban Forestry & Urban Greening, 14(1), 1102-1109. https://doi.org/10.1016/j.ufug.2015.10.008 Thompson, K. y McCarthy, M. A. (2008). Traits of British alien and native urban plants. Journal of Ecology, 96(5), 853-859. https://doi.org/10.1111/j.1365-2745.2008.01383.x Tovar-Corzo, G. (2007). Manejo del arbolado urbano en Bogotá. Territorios, 16-17, 149-174. Vallet, J., Daniel, H., Beaujouan, V., Rozé, F. y Pavoine, S. (2010). Using biological traits to assess how urbanization filters plant species of small woodlands. Applied Vegetation Science, 13(4), 412.424. https://doi.org/10.1111/j.1654-109x.2010.01087.x Varis, O. (2007). Megacities, development and water. Water Resources Development, 22(2), 199-225. https://doi.org/10.1080/07900620600648399 Violle, C., Navas, M. L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I. y Garnier, E. (2007). Let the concept of trait be functional! Oikos, 116(5), 882-892. https://doi.org/10.1111/j.0030-1299.2007.15559.x Viswanathan, B., Volder, A., Watson, W. T. y Aitkenhead-Peterson, J. A. (2011). Impervious and pervious pavements increase soil CO2 concentrations and reduce root production of American sweetgum (Liquidambar styraciflua). Urban Forestry & Urban Greening, 10(2), 133-139. https://doi.org/10.1016/j.ufug.2011.01.001 Wang, X., Wang, X., Su, Y. y Zhang, H. (2019). Land pavement depresses photosynthesis in urban trees especially under drought stress. Science of the Total Environment, 653, 120-130. https://doi.org/10.1016/j.scitotenv.2018.10.281 Williams, N. S. G., Schwartz, M. W., Vesk, P. A., McCarthy, M. A., Hahs, A. K., Clemants, S. E., Corlett, R. T., Duncan, R. P., Norton, B. A., Thompson, K. y McDonnell, M. J. (2009). A conceptual framework for predicting the effects of urban environments on floras. Journal of Ecology, 97(1), 4-9. https://doi.org/10.1111/j.1365-2745.2008.01460.x Wobbrock, J. O., Findlater, L., Gergle, D. y Higgins, J. J. (2011). The Aligned Rank Transform for nonparametric factorial analyses using only Anova procedure. En Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 143-146). Nueva York: ACM Press. https://doi.org/10.1145/1978942.1978963 Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J. H. C., Diemer, M., Flexas, J., Garnier, E., Groom, P. K., Gulias, J., Hikosaka, K., Lamont, B. B., Lee, T., Lee, W., Lusk, C., Midgley, J. J., Navas, M. L., Niinemets, Ü., Oleksyn, J., Osada, H., Poorter, H., Pool, P., Prior, L., Pyankov, V. I. Roumet, C., Thomas, S. C., Tjoelker, M. G., Veneklaas, E. J. y Villar, R. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827. https://doi.org/10.1038/nature02403 Xu, F., Guo, W., Xu, W., Wei, Y. y Wang, R. (2009). Leaf morphology correlates with water and light availability: what consequences for simple and compound leaves? Progress in Natural Science, 19, 1789-1798. https://doi.org/10.1016/j.pnsc.2009.10.001 Yan, Z., Teng, M., He, W., Liu, A., Li, Y. y Wang, P. (2019). Impervious surface area is a key predictor for urban plant diversity in a city undergone rapid urbanization. Science of the Total Environment, 650, 335-342. https://doi.org/10.1016/j.scitotenv.2018.09.025 Yu, K., Van Geel, M., Ceulemans, T., Geerts, W., Ramos, M. M., Sousa, N., Castro, P. M. L., Kastendeuch, P., Najjar, G., Ameglio, T., Ngao, J., Saudreau, M., Honnay, O. y Somers, B. (2018). Foliar optical traits indicate that sealed planting conditions negatively affect urban tree health. Ecological Indicators, 95, 895-906. https://doi.org/10.1016/j.ecolind.2018.08.047spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.relation.citationvolume23spa
dc.relation.citationissue2spa
dc.relation.citationeditionNúm. 2 , Año 2020 : Julio-diciembrespa
dc.relation.ispartofjournalColombia forestalspa
dc.identifier.eissn2256-201X
dc.identifier.urlhttps://doi.org/10.14483/2256201X.15811
dc.relation.citationstartpage5
dc.relation.citationendpage19
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/15811/15968
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/15811/16193
dc.type.contentTextspa
dspace.entity.typePublicationspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Colombia forestal - 2020
Excepto si se señala otra cosa, la licencia del ítem se describe como Colombia forestal - 2020