Mostrar el registro sencillo del ítem

dc.contributor.authorRangel Mendoza, Jorge Albertospa
dc.contributor.authorSilva Parra, Amandaspa
dc.date.accessioned2020-07-01 00:00:00
dc.date.accessioned2023-09-19T21:10:29Z
dc.date.available2020-07-01 00:00:00
dc.date.available2023-09-19T21:10:29Z
dc.date.issued2020-07-01
dc.identifier.issn0120-0739
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/44486
dc.description.abstractEl objetivo de este estudio fue determinar el efecto de los sistemas agroforestales (AFS) y no AFS de Theobroma cacao L. en la calidad del suelo y la hojarasca, durante las épocas de lluvia (RS) y sequía (DS) en zona tropical. Los tratamientos fueron cultivo de Theobroma cacao (CC), forestal de Yopo (Anadenanthera peregrina L.) Speg. (YF), forestal de Acacia (Acacia mangium Willd.) (AF), sistema agroforestal de T. cacao + forestal de Yopo (CYF), sistema agroforestal de T. cacao + forestal de Acacia (CAF), en un diseño completamente al azar en el campo. La producción de hojarasca fue más alta en CC (0.79 y 0.73 ton.ha-1) en RS y DS, respectivamente. CC y AFS mejoró la fertilidad del suelo, menos Mg en CC; AFS la calidad de la hojarasca, CAF en DS y CYF en ambas épocas, menos el B y S en DS. Los AFS pueden ser una solución en zonas tropicales para solventar los problemas de baja fertilidad de los suelos.spa
dc.description.abstractThe objective of this study was to determine the effect of Agroforestry systems (AFS) and non-AFS of Theobroma cacao L. on soil and leaf litter quality, during rainy (RS) and dry (DS) seasons in a tropical zone. The treatments were T. cacao crop (CC), Yopo forestry (Anadenanthera peregrina L.) Speg. (YF), Acacia forestry (Acacia mangium Willd.) (AF), Agroforestry system of T. cacao + Yopo forestry (CYF), Agroforestry system of T. cacao + Acacia forestry (CAF), arranged in random design in the field. Leaf litter production was highest in CC (0.79 and 0.73 ton.ha-1) during RS and DS, respectively. CC and AFS improved soil fertility, less Mg in CC; AFS leaf litter quality, CAF in DS and CYF in both seasons, less B and S in DS. AFS can be a solution in tropical zones to solve the problems of low soil fertility.eng
dc.format.mimetypeapplication/pdfeng
dc.format.mimetypetext/xmleng
dc.language.isoengeng
dc.publisherUniversidad Distrital Francisco José de Caldasspa
dc.rightsColombia forestal - 2020eng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0eng
dc.sourcehttps://revistas.udistrital.edu.co/index.php/colfor/article/view/16123eng
dc.subjectbiotecnologíaspa
dc.subjectfertilidad del suelospa
dc.subjectmateria orgánica del suelospa
dc.subjectnutrientesspa
dc.subjectsuelos tropicalesspa
dc.subjectbiotechnologyeng
dc.subjectsoil fertilityeng
dc.subjectsoil organic mattereng
dc.subjectnutrientseng
dc.subjecttropical soilseng
dc.titleSistemas agroforestales de <i>Theobroma cacao</i> L. afectan la calidad del suelo y la hojarascaspa
dc.typeArtículo de revistaspa
dc.identifier.doi10.14483/2256201X.16123
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501eng
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1eng
dc.type.localJournal articleeng
dc.title.translatedAgroforestry systems of Theobroma cacao L. affects soil and leaf litter qualityeng
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2eng
dc.relation.referencesAllen, S. E. (1974). Chemical Analysis of Ecological Materials. Oxford, G. B.: Blackwell Scientific Publications.eng
dc.relation.referencesAnderson, M. e Ingram, J. S. (1989). Tropical Soil Biology and fertility. A Handbook of Methods. Wallingford, Oxon: CAB International.eng
dc.relation.referencesAndrade, H. J., Figueroa, J. M. P., Silva, D. P. (2013). Carbon storage in cacao (Theobroma cacao) plantations in Armero - Guayabal (Tolima, Colombia). Scientia Agroalimentaria, 1, 6-10. http://infocafes.com/portal/wp-content/uploads/2017/02/RIUT-LI-spa-2013-Almacenamiento-de-carbono-en-cacaotales-Theobroma-cacao-en-Armero-Guayabal-Tolima-Colombia.pdfeng
dc.relation.referencesAponte, C., Marañón, T. y García, L. V. (2010). Microbial C, N and P in soils of Mediterranean oak forests: influence of season, canopy cover and soil depth. Biogeochemistry, 101, 77-92. https://doi.org/10.1007/s10533-010-9418-5.eng
dc.relation.referencesAponte, C., García L. V. y Marañón T. (2012). Tree species effect on litter descomposition and nutrient release in mediterranean oak forests changes over time. Ecosystems, 15, 1204-1218. https://doi.org/10.1007/s10021-012-9577-4.eng
dc.relation.referencesBlaser, W. J., Oppong, J., Yeboah, E. y Six, J. (2017). Shade trees have limited benefits for soil fertility in cocoa agroforests. Agricultural Ecosystem Environment, 243, 83-91. https://doi.org/10.1016/j.agee.2017.04.007.eng
dc.relation.referencesCleveland, C. C., Townsend, A. R., Taylor, P., Alvarez-Clare, S., Bustamante, M. M., Chuyong, G., Dobrowski, S. Z., Grierson, P., Harms, K. E., Houlton, B. Z., Marklein, A., Parton, W., Porder, S., Reed, S. C., Sierra, C. A., Silver, W. L., Tanner, E. V. y Wieder, W. R. (2011). Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis. Ecology letters, 14, 939-947. https://doi.org/10.1111/j.1461-0248.2011.01658.xeng
dc.relation.referencesCastro, H. E. y Gómez, M. I. (2010). Fertilidad de suelos y fertilizantes. En H. Burbano y M.F. Silva (eds.), Ciencias del suelo principios básicos (pp. 213-303). Bogotá: SCCS.eng
dc.relation.referencesDi Rienzo, J. A., Casanoves, F., Balzarini, M. G., González. L. y Tablada, M. (2011). InfoStat versión 2011. Universidad Nacional de Córdoba, Argentina: Grupo InfoStat, FCA. http://www.infostat.com.areng
dc.relation.referencesFioretto, A., Dinardo, C., Papa, S. y Fuggi, A. (2005). Lignin and cellulose degradation and nitrogen dynamics during decomposition of three leaf litter species in a Mediterranean ecosystem. Soil Biology & Biochemistry, 37(6), 1083-1091. https://doi.org/10.1016/j.soilbio.2004.11.007eng
dc.relation.referencesFontes, A. G., Gama-Rodrigues, A. C., Gama-Rodrigues, E. F., Sales, M. V. S., Costa, M. G. y Machado, R. C. R. (2014). Nutrient stocks in litterfall and litter in cocoa agroforests in Brazil. Plant Soil, 383(1-2), 313-335. https://doi.org/10.1007/s11104-014-2175-9eng
dc.relation.referencesHagen-Thorn, A., Varnagiryte, I., Nihlgård, B. y Armolaitis, K. (2006). Autumn nutrient resorption and losses in four deciduous forest tree species. Forest Ecology and Management, 228(1-3), 33-39. https://doi.org/10.1016/j.foreco.2006.02.021eng
dc.relation.referencesHartemink, A. E. (2005). Nutrient stocks, nutrient cycling, and soil changes in cocoa ecosystems: A review. Advances in Agronomy, 86, 227-253. https://doi.org/10.1016/S0065-2113(05)86005-5eng
dc.relation.referencesHossain, M., Siddique, M. R. H., Rahman, M. S., Hossain, M. Z. y Hasan, M. M. (2011). Nutrient dynamics associated with leaf litter decomposition of three agroforestry tree species (Azadirachta indica, Dalbergia sissoo, and Melia azedarach) of Bangladesh. Journal of Forestry Research, 22(4), 577-582. https://doi.org/10.1007/s11676-011-0175-7eng
dc.relation.referencesInstituto de Hidrología, Meteorología y Estudios Ambientales (2019). 05 boletín predicción climática mayo 2019. Bogotá: Instituto de Hidrología, Meteorología y Estudios Ambientales.eng
dc.relation.referencesInstituto Colombiano Agropecuario (ICA) (1989). Manual de análisis de suelos, plantas y aguas para riego. Manual de asistencia técnica n.° 47. Bogotá: ICA.eng
dc.relation.referencesInstituto Geográfico Agustín Codazzi (Igac) (2000). Consideraciones generales para interpretar análisis de suelos. Subdirección de Agrología. Bogotá: Igac.eng
dc.relation.referencesIsaac, M. E., Timmer, V. R. y Quashie-Sam, S. J. (2007). Shade tree effects in an-8-year cocoa Agroforestry System: biomass and nutrient diagnosis of Theobroma cacao by vector analysis. Nutrient Cycling in Agroecosystems, 78, 155-165. https://doi.org/10.1007/s10705-006-9081-3eng
dc.relation.referencesJose, S. (2009). Agroforestry for ecosystem services and environmental benefits: an overview. Agroforestry System, 76, 1-10. https://doi.org/10. 1007/s10457-009-9229-7eng
dc.relation.referencesKimaro, A. A., Timmer, V. R., Mugasha, A. G., Chamshama, S. y Kimaro, D. A. (2007). Nutrient use efficiency and biomass production of tree species for rotational woodlot systems in semi-arid Morogoro, Tanzania. Agroforestry System, 71, 175-184. https://doi.org/10.1007/s10457-007-9061-xeng
dc.relation.referencesLeiva, E. I. (2012). Aspectos para la nutrición del Cacao Theobroma cacao L. http://www.bdigital.unal.edu.co/50450/1/ednaivonneleivarojas.2012.pdfeng
dc.relation.referencesLin, Y. M., Liu, J. W., Xiang, P., Lin, P., Ding, Z. H. y Lobo Sternberg, D. (2007). Tannins and nitrogen dynamics in mangrove leaves at different age and decay stages (Jiulong River Estuary, China). Hydrobiologia, 583(1), 285-295. https://doi.org/10.1007/s10750-006-0568-3eng
dc.relation.referencesLuedeling, E., Smethurst, P. J., Baudron, F., Bayala, J., Huth, N. I., Noordwijk, M. V., Ong, C. K., Muha, R., Luciana, B., Muthum, C. y Sinclair, F. (2016). Field-scale modeling of tree-crop interactions: Challenges and development needs. Agricultural System, 142, 51-69. https://doi.org/10.1016/j.agsy.2015.11.005eng
dc.relation.referencesMalavolta, E., Vitti, G.C. y Oliveira, S. A. C. (1997). Avaliação do estado nutricional das plantas: princípios e aplicações. Piracicaba: Potafos.eng
dc.relation.referencesMbow, C., Smith, P., Skole, D., Duguma, L. y Bustamante, M. (2014). Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. Current Opinion in Environmental Sustainability, 6, 8-14. https://doi.org/10.1016/j.cosust.2013.09.002eng
dc.relation.referencesNair, P. K. R., Nair, V. D., Kumar, B. M., Showalter, J. M. (2010). Carbon sequestration in agroforestry systems. Advances in Agronomy, 108, 237-307. https://doi.org/10.1016/S0065-2113(10)08005-3eng
dc.relation.referencesNgoran, A., Zakra, N., Ballo, K., Kouame C., Zapta F., Hofman G. y Cleemant, O. V. (2006). Litter decomposition of Acacia auriculiformis and Acacia mangium under coconut trees on quaternary sandy soils in Ivory Coast. Biology and Fertility of Soils, 43, 102-106. https://doi.org/10.1007/s00374-005-0065-2eng
dc.relation.referencesOliveira-Filho, A. T., Budke, J. C., Jarenkow, J. A., Eisenlohr, P. V. y Neves, D. R. M. (2015). Delving into the variations in tree species composition and richness across South American subtropical Atlantic and Pampean forests. Journal of Plant Ecology, 8, 1-23. https://doi.org/10.1093/jpe/rtt058eng
dc.relation.referencesPuentes-Páramo, Y., Menjivar-Flores, J. y Aranzazu-Hernández, F. (2016). Concentración de nutrientes en hojas, una herramienta para el diagnóstico nutricional en Cacao. Agronomia Costarrincense, 27(2), 329-336. http://dx.doi.org/10.15517/am.v27i2.19728eng
dc.relation.referencesRojas, J., Caicedo, V. y Jaimes, Y. (2017). Biomass decomposition dynamic in agroforestry systems with Theobroma cacao L. in Rionegro, Santander (Colombia). Agronomía Colombiana, 35(2), 182-189. https://doi.org/10.15446/agron.colomb.v35n2.60981eng
dc.relation.referencesSalgado, M., Espinosa, S., Lerna, J., Moreno, S. y López, J. (2009). Cuantificación, descomposición y contenido nutrimental de hojarasca en dos sistemas agroforestales con cacao. Quehacer Científico en Chiapas, 1(7), 10-15.eng
dc.relation.referencesSchalatter, J., Gerding, V. y Calderón, S. (2006). Aporte de la hojarasca al ciclo biogeoquímico en plantaciones de Eucalyptus nitens. Revista Bosque, 27(2), 115-125. http://doi.org/10.4067/S0717-92002006000200006eng
dc.relation.referencesSida, T. S., Baudron, F., Kim, H. y Giller, K. E. (2018). Climate-smart agroforestry: Faidherbia albida trees buffer wheat against climatic extremes in the Central Rift Valley of Ethiopia. Agricultural and Forest Meteorology, 248, 339-347. https://doi.org/10.1016/j.agrformet.2017.10.013eng
dc.relation.referencesSileshi, G. W., Mafongoya, P. L., Akinnifesi, F. K. y Phiri, E. (2014). Agroforestry: Fertilizer trees. En N. V. Alfen (eds.), Encyclopedia of Agriculture and Food Systems, I (pp. 222-234). https://doi.org/10.1016/B978-0-444-52512-3.00022-Xeng
dc.relation.referencesSilva-Parra, A. (2018). Modelación de los stocks de carbono del suelo y las emisiones de dióxido de carbono (GEI) en sistemas productivos de la Altillanura Plana. Orinoquia, 22(2), 158-171. https://dx.doi.org/10.22579/20112629.525eng
dc.relation.referencesSilva-Parra, A., Garay-Rodríguez, S. y Gómez-Insuasti, A. S. (2018). Impacto de Alnus acuminata Kunth en los flujos de n2o y calidad del pasto Pennisetum clandestinum Hochst. ex Chiov. Colombia Forestal, 21(1), 47-57. https://doi.org/10.14483/2256201X.11629eng
dc.relation.referencesSmiley, G. L. y Kroschel, J. (2010). Yield development and nutrient dynamics in cocoa-gliricidia agroforests of Central Sulawesi, Indonesia. Agroforestry Systems, 78(2), 97-114. https://doi.org/10.1007/s10457-009-9259-1eng
dc.relation.referencesSoil Survey Staff (2006). Keys to soil taxonomy. Washington, DC, EE. UU.: USDA National Soil Conservation Service. Somarriba, E. y Beer, J. (2011). Productivity of Theobroma cacao agroforestry Systems with timber or legume service shade trees. Agroforestry systems, 81, 109-121. https://doi.org/10.1007/s10457-010-9364-1eng
dc.relation.referencesTraore, K., Ganry, F., Oliver, R. y Gigou, J. (2004). Litter production and soil fertility in a Vitellaria paradoxa parkland in a catena in southern Mali. Arid Land Research and Management, 18, 359-368. https://doi.org/10.1080/ 15324980490497393eng
dc.relation.referencesTriadiati, S., Tjitrosemito, E., Sundarsono, G., Qayim, I. y Leuschner, C. (2011). Litterfall production and leaf-litter decomposition at natural forest and Cacao agroforestry in Central Sulawesi, Indonesia. Asian Journal of Biological Sciences, 4, 221-234. https://doi.org/10.3923/ajbs.2011.221.234eng
dc.relation.referencesTscharntke, T., Clough, Y., Bhagwat, S., Buchori, D., Faust, H., Hertel, D., lscher, D., Juhrbandt, J., Kessler, M., Perfecto, I., Scherber, C., Schrothe, G., Veldkamp, E. y Wanger, T. C. (2011). Multifunctional shade-tree management in tropical agroforestry landscapes-a review. Journal of Applied Ecology, 48, 619-629. https://doi.org/10.1111/j.1365-2664.2010.01939.xeng
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.eng
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85eng
dc.type.driverinfo:eu-repo/semantics/articleeng
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTeng
dc.type.versioninfo:eu-repo/semantics/publishedVersioneng
dc.relation.citationvolume23spa
dc.relation.citationissue2spa
dc.relation.citationeditionNúm. 2 , Año 2020 : Julio-diciembrespa
dc.relation.ispartofjournalColombia forestalspa
dc.identifier.eissn2256-201X
dc.identifier.urlhttps://doi.org/10.14483/2256201X.16123
dc.relation.citationstartpage75
dc.relation.citationendpage88
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/16123/15970
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/16123/16199
dc.type.contentTexteng
dspace.entity.typePublicationeng


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Colombia forestal - 2020
Excepto si se señala otra cosa, la licencia del ítem se describe como Colombia forestal - 2020