Mostrar el registro sencillo del ítem

dc.contributor.authorArévalo B., Rafael E.spa
dc.contributor.authorPulido R., Esperanza N.spa
dc.contributor.authorSolórzano G., Juan F.spa
dc.contributor.authorSoares, Richardspa
dc.contributor.authorRuffinatto, Flaviospa
dc.contributor.authorRavindran, Prabuspa
dc.contributor.authorWiedenhoeft, Alex C.spa
dc.date.accessioned2021-01-01 00:00:00
dc.date.accessioned2023-09-19T21:10:31Z
dc.date.available2021-01-01 00:00:00
dc.date.available2023-09-19T21:10:31Z
dc.date.issued2020-01-01
dc.identifier.issn0120-0739
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/44492
dc.description.abstractSistemas de identificación automatizada de maderas pueden fortalecer la lucha contra el tráfico ilegal de maderas. Este trabajo utilizó 764 especímenes de xilotecas, correspondientes a 84 taxones, para desarrollar un modelo de identificación para 14 especies comerciales de Colombia. Se comenzó colectando imágenes de especímenes provenientes de xilotecas fuera de Colombia, que se utilizaron para entrenar y evaluar un modelo inicial. Se colectaron imágenes adicionales provenientes de una xiloteca Colombiana (BOFw), que se utilizaron para refinar y producir el modelo final. La capacidad de reconocimiento de este modelo fue del ~97%, demostrando que incluir muestras locales aumenta la precisión y confiabilidad del sistema [XyloTron]. Este estudio presenta el primer modelo de vision computarizada para identificación de maderas en Colombia, desarrollado en una escala de tiempo corta y bajo cooperación internacional. Concluimos que pruebas en campo y capacitación forense y en aprendizaje automatizado, son los siguientes pasos lógicos a seguir.spa
dc.description.abstractField deployable computer vision wood identification systems can play a key role in combating illegal logging in the real world. This work used 764 xylarium specimens from 84 taxa to develop an image data set to train a classifier to identify 14 commercial Colombian timbers. We imaged specimens from various xylaria outside Colombia, trained and evaluated an initial identification model, then collected additional images from a Colombian xylarium (BOFw), and incorporated those images to refine and produce a final model. The specimen classification accuracy of this final model was ~ 97%, demonstrating that including local specimens can augment the accuracy and reliability of the XyloTron system. Our study demonstrates the first deployable computer vision model for wood identification in Colombia, developed on a timescale of months rather than years by leveraging international cooperation. We conclude that field testing and advanced forensic and machine learning training are the next logical steps.eng
dc.format.mimetypetext/xmleng
dc.format.mimetypeapplication/pdfeng
dc.language.isoengeng
dc.publisherUniversidad Distrital Francisco José de Caldasspa
dc.rightsColombia forestal - 2021eng
dc.rights.urihttps://creativecommons.org/licenses/by-sa/4.0/eng
dc.sourcehttps://revistas.udistrital.edu.co/index.php/colfor/article/view/16700eng
dc.subjectWood identificationeng
dc.subjectForensic wood anatomyeng
dc.subjectDeep learningeng
dc.subjectTransfer learningeng
dc.subjectMachine Learningeng
dc.subjectIdentificación de maderaspa
dc.subjectAprendizaje profundospa
dc.subjectAnatomía forense de maderaspa
dc.subjectTransferencia de aprendizajespa
dc.titleIdentificación de maderas colombianas utilizando el Xylotron: Prueba de concepto de una colaboración internacionalspa
dc.typeArtículo de revistaspa
dc.identifier.doi10.14483/2256201X.16700
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501eng
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1eng
dc.type.localJournal articleeng
dc.title.translatedImaged based identification of colombian timbers using the xylotron: a proof of concept international partnershipeng
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2eng
dc.relation.referencesCovima. (2020). Minambiente. (V.2.9.4)[mobile software] de Andrade, B.G., Basso, V.M. & de Figueiredo Latorraca, J.V. (2020). Machine vision for field-level wood identification. IAWA Journal, 1-18. https://doi.org/10.1163/22941932-bja10001. Devries, T. & Taylor, G.W. (2017). Improved regularization of convolutional neural networks with cutout. arXiv e-prints, abs/1708.04552. Dormontt, E.E., Boner, M., Braun, B., Breulmann, G., Degen, B., Espinoza, E., Gardner, S., Guillery, P., Hermanson, J.C., Koch, G., Lee, S.L., Kanashiro, M., Rimbawanto, A., Thomas, D., Wiedenhoeft, A.C., Yin, Y., Zahnen, J. & Lowe, A.J. (2015). Forensic timber identification: It’s time to integrate disciplines to combat illegal logging. Biological Conservation, 191, 790–798. https://doi.org/10.1016/j.biocon.2015.06.038 Especies Maderables 2. (2016). Kudos Ltda. (V.0.1.3)[mobile software] Filho P.L.P., Oliveira L.S., Nisgoski S. & Britto A.S. (2014). Forest species recognition using macroscopic images. Machine Vision and Applications, 25, 1019–1031. https://doi.org/10.1007/s00138-014-0592-7 He K., Zhang X., Ren S. & Sun J. (2016). Deep residual learning for image recognition. En: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778. https://doi.org/10.1109/CVPR.2016.90 Hermanson J.C. & Wiedenhoeft A.C. (2011). A brief review of machine vision in the context of automated wood identification systems. IAWA Journal, 32(2), 233–250. https://doi.org/10.1163/22941932-90000054 IDEAM. (2020). Resultados de monitoreo de deforestación, 2019. Retrieved from: http://www.ideam.gov.co/documents/10182/105413996/presentacionbalancedeforestacion2019/7c9323fc-d0a1-4c95-b1a1-1892b162c067 Khalid M., Lee E.L.Y., Yusof R. & Nadaraj M. (2008). Design of an intelligent wood species recognition system. International Journal of Simulation System, Science and Technology, 9(3), 9–19. López Camacho R., Pulido Rodríguez E.N., González Martínez R.O., Nieto Vargas J.E. & Vásquez M.Y. (2014). Maderas. Especies comercializadas en el territorio CAR. Guía para su identificación. Bogotá D.C.: Editorial Universidad Distrital Francisco José de Caldas. Lowe A.J., Dormontt E.E., Bowie M.J., Degen B., Gardner S., Thomas D., Clarke C., Rimbawanto A., Wiedenhoeft A.C., Yin Y. & Sasaki N. (2016). Opportunities for improved transparency in the timber trade through scientific verification. BioScience, 66(11), 990–998. https://doi.org/10.1093/biosci/biw129 Pan S.J. & Yang Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345–1359. https://doi.org/10.1109/TKDE.2009.191 Quirk J.T. (1980). Wood anatomy of the Vochysiaceae. IAWA Bulletin, 1(4), 172–179. https://doi.org/10.1163/22941932-90000717 Ravindran P. & Wiedenhoeft A.C. (2020) Comparison of two forensic wood identification technologies for ten Meliaceae woods: computer vision versus mass spectrometry. Wood Science and Technology. https://doi.org/10.1007/s00226-020-01178-1 Ravindran P., Costa A., Soares R. & Wiedenhoeft A.C. (2018). Classification of CITES-listed and other neotropical Meliaceae wood images using convolutional neural networks. Plant Methods, 14, 25. https://doi.org/10.1186/s13007-018-0292-9 Ravindran P., Ebanyenle E., Ebeheakey A.A., Abban K.B., Lambog O., Soares R., Costa A. & Wiedenhoeft A.C. (2019). Image based identification of Ghanaian timbers using the XyloTron: Opportunities, risks and challenges. En: M. De-Arteaga, T. Afonja, A. Coston (eds.). Proceedings of NeurIPS 2019 Workshop on Machine Learning for the Developing World: Challenges and Risks of ML4D. arXiv:2001.00249. Ravindran P., Thompson B.J., Soares R.K. &Wiedenhoeft A.C. (2020) The XyloTron: Flexible, Open-Source, Image-Based Macroscopic Field Identification of Wood Products. Frontiers in Plant Science, 11, 1015. https://doi.org/10.3389/fpls.2020.01015 Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh S., Ma S., Huang Z., Karpathy A., Khosla A., Bernstein M., Berg A.C. & Fei-Fei L. (2015). ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 115(3), 211–252. https://doi.org/10.1007/s11263-015-0816-y Souza, D.V., Santos, J.X., Vieira, H.C., Naide, T.L., Nisgoski, S. & Oliveira, L.E.S. (2020). An automatic recognition system of Brazilian flora species based on textural features of macroscopic images of wood. Wood Science and Technology, 54, 1065–1090. https://doi.org/10.1007/s00226-020-01196-z Wiedenhoeft, A.C., Simeone, J., Smith, A., Parker-Forney, M., Soares, R., Fishman, A. (2019). Fraud and misrepresentation in retail forest products exceeds U. S. forensic wood science capacity. PLoS ONE, 14(7), e0219917. https://doi.org/10.1371/journal.pone.0219917 WWF-Colombia-Programa Subregional Amazonas Norte & Chocó Darién. (2013). Maderas de Colombia. Retrieved from: www.wwf.org.co/?213040/Maderas-de-Colombiaeng
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.eng
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85eng
dc.type.driverinfo:eu-repo/semantics/articleeng
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTeng
dc.type.versioninfo:eu-repo/semantics/publishedVersioneng
dc.relation.citationvolume24spa
dc.relation.citationissue1spa
dc.relation.citationeditionNúm. 1 , Año 2021 : Enero-Juniospa
dc.relation.ispartofjournalColombia forestalspa
dc.identifier.eissn2256-201X
dc.identifier.urlhttps://doi.org/10.14483/2256201X.16700
dc.relation.citationstartpage5
dc.relation.citationendpage16
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/16700/16789
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/16700/16324
dc.type.contentTexteng
dspace.entity.typePublicationeng


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Colombia forestal - 2021
Excepto si se señala otra cosa, la licencia del ítem se describe como Colombia forestal - 2021