Mostrar el registro sencillo del ítem
Uso del modelado inverso por HYDRUS-1D para predecir algunos parámetros hidráulicos del suelo a partir de la evaporación del agua del suelo
dc.contributor.author | Mohammed, Esam | spa |
dc.contributor.author | Abid-Alziz AL-Qassab , Salahaldeen | spa |
dc.contributor.author | Salih AL-Wazan , Faris Akram | spa |
dc.date.accessioned | 2022-01-03 00:00:00 | |
dc.date.accessioned | 2023-09-19T21:10:35Z | |
dc.date.available | 2022-01-03 00:00:00 | |
dc.date.available | 2023-09-19T21:10:35Z | |
dc.date.issued | 2022-01-03 | |
dc.identifier.issn | 0120-0739 | |
dc.identifier.uri | http://test.repositoriodigital.com:8080/handle/123456789/44501 | |
dc.description.abstract | El objetivo de esta investigación fue evaluar el uso de agua insaturada en función de la evaporación del agua del suelo, que fue determinada mediante el examen de algunos parámetros hidráulicos del suelo en diferentes texturas. Los resultados muestran que los valores predichos de estos parámetros, que fueron obtenidos por medio de modelado inverso con el software HYDRUS-1D y dependen del cambio de contenido volumétrico de agua, mostraron estar significativamente de acuerdo con los valores medidos de simulaciones con datos obtenidos en un laboratorio o en campo para la evaporación del agua del suelo a los 5. 10. 20 y 45 días de medición. Simultáneamente se realizó una simulación inversa de un periodo de 5 días de evaporación del suelo en un laboratorio para predecir los valores de infiltración y la curva de retención de agua, los cuales mostraron estar significativamente de acuerdo con los valores medidos de todas las texturas del suelo. | spa |
dc.description.abstract | The objective of this research was to assess the use of unsaturated water flow in terms of soil water evaporation, which was determined by evaluating some soil hydraulic parameters in different soil textures. The results show that the predicted values of these parameters, which were obtained through inverse modeling with the HYDRUS-1D software and depend on the change of the volumetric water content, exhibited a significant agreement with the measured values from laboratory or field simulation data for soil water evaporation at 5. 10. 20. and 45 days of measurement. At the same time, inverse simulation was conducted on soil hydraulic parameters obtained from a 5-day laboratory soil evaporation period to predict field infiltration values and water retention curve, which showed a significant agreement with measured values for all soil textures. | eng |
dc.format.mimetype | application/pdf | eng |
dc.format.mimetype | text/xml | eng |
dc.language.iso | eng | eng |
dc.publisher | Universidad Distrital Francisco José de Caldas | spa |
dc.rights | Colombia forestal - 2022 | eng |
dc.rights.uri | https://creativecommons.org/licenses/by-sa/4.0/ | eng |
dc.source | https://revistas.udistrital.edu.co/index.php/colfor/article/view/18157 | eng |
dc.subject | cumulative infiltration | eng |
dc.subject | soil evaporation | eng |
dc.subject | soil hydraulic parameters | eng |
dc.subject | infiltración acumulativa | spa |
dc.subject | evaporación del suelo | spa |
dc.subject | parámetros hidráulicos del suelo | spa |
dc.title | Uso del modelado inverso por HYDRUS-1D para predecir algunos parámetros hidráulicos del suelo a partir de la evaporación del agua del suelo | spa |
dc.type | Artículo de revista | spa |
dc.identifier.doi | 10.14483/2256201X.18157 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | eng |
dc.type.local | Journal article | eng |
dc.title.translated | Using Inverse Modeling by HYDRUS-1D to Predict Some Soil Hydraulic Parameters from Soil Water Evaporation | eng |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | eng |
dc.relation.references | Amini, M., Ebrahimian, H., Liaghata, A. & Fujimaki, H. (2019). Unsaturated Soil Hydraulic Properties according to Double-Ring Infiltration of Saline Water. Eurasian Soil Science, 53. 1596-1609. https://doi.org/10.1134/S1064229320110022 Fujimaki, H., & Yanagawa, A. (2019). Application of evaporation method using two torsiometers for determining unsaturated hydraulic conductivity beyond tensiometric range. Eurasian Soil Science, 52. 405-413. https://doi.org/10.1134/S1064229319040069 Guellouz, L., Askri, B., Jaffré, J., & Bouhlila, G. (2020). Estimation of the soil hydraulic properties from field data by solving an inverse problem. Nature, 10(1), 9359. https://doi.org/10.1038/s41598-020-66282-5 Hachimi, M., Maslouhi, A., Tamoh, K., & Qanza, H. (2019). Estimation of soil hydraulic properties of basin Loukkos (Morocco) by inverse modeling. KSCE Journal of Civil Engineering, 23(3), 1407-1419 . https://doi.org/10.1007/s12205-019-0628-7 Hopmans, J. W., Simunek, J., Romano, N., & Durner, W. (2002). Inverse methods. In J. J. Dane & G. C. Topp (Eds.) Methods of soil analysis. Part 4: physical methods. 3rd ed. (pp. 963-1008). American Society of Agronomy, Soil Science Society of America. https://doi.org/10.2136/sssabookser5.4.c40 Kelleners, T. J., Soppe, R. W., Ayars, J. E., Simunek, J., & Skaggs, T. H. (2005). Inverse Analysis of upward water flow in a Ground water Table lysimeter. Vadose Zone Journal, 4. 558-572. https://doi.org/10.2136/vzj2004.0118 Kirkham, J. M., Smith, C. J., Doyle, R. B., & Brown, P. H. (2019). Inverse modelling for predicting both water and nitrate movement in a structured-clay soil (Red Ferrosol). PeerJ, 16(6). e6002. https://doi.org/10.7717/peerj-6002 Klute, A. (1986). Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods. American Society of Agronomy, Soil Science Society of America. https://doi.org/10.2136/sssabookser5.1.2ed Minasny, B., & McBratney, A. B. (2002). The Neuro-m Method for Fitting Neural Network Parametric Pedotransfer Functions. Soil Science Society of America, 66, 352-361. https://doi.org/10.2136/sssaj2002.1407a Mohammed, E. M., Qassab, S. A., & Salih, F. A. (2019, October 3-5). Application of Artificial Neural Network to Predict Some Water Hydraulic Functions and Parameters for Some Soils in Nineveh Province / Iraq [Conference presentation]. 6th International Conference on Sustainable Agriculture and Environment, Ankara, Turkey. Mualem, Y. (1976). A new model for predicting hydraulic conductivity of unsaturated porous-media. Water Resources Research. 12(3), 513-522. https://doi.org/10.1029/WR012i003p00513 Ritter, A., Hupet, F., Munoz-Carpena, R., Lambot, S. , & Vanclooster, M. (2003). Using inverse method for estimating soil hydraulic properties from field data as an alternative to direct methods. Agricultural Water Management, 59, 77-96. https://doi.org/10.1016/S0378-3774(02)00160-9 Rezaei, M., Seuntjens, P., Shahidi, R., Joris, I., Boenne, W., Al-Barri, B., & Cornelis, W. M. (2016). The relevance of in situ and laboratory characterization of sandy soil hydraulic properties for soil water simulations. Journal of Hydrology, 534. 251-265. https://doi.org/10.1016/j.jhydrol.2015.12.062 Samani, J. M., & Fathi, P. (2009). Estimation of unsaturated soil hydrodynamic parameters using Inverse problem Technique. Journal of Agricultural Science and Technology, 10. 199-210. Schaap, M. G., Leij, F. J., & van Genuchten, M. Th. (2001). Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology, 251(3-4), 163-176. https://doi.org/10.1016/S0022-1694(01)00466-8 Scharnagl, B., Vrugt, J. A., Vereecken, H., & Herbst, M. (2011). Inverse modeling of in situ soil water dynamics: Investigating the effect of different prior distributions of soil hydraulic parameters. Hydrology and Earth System Sciences, 15. 3043-3059. https://doi.org/10.5194/hess-15-3043-2011 Schelle, H., Iden, S.C., Fank, J., & Durner, W. (2012). Inverse modeling of water flow in lysimeter. Geophysical Research, 13(3), 435-442. Simunek, J., Angulo-Jaramillo, R., Schaap, M. G, Martinus, J. V., & Van Genuchten, Th. (1998a). Using an inverse method to estimate the hydraulic properties of crusted soil from tension-disc infiltrometer data. Geoderma, 86, 61-81. https://doi.org/10.1016/S0016-7061(98)00035-4 Simunek, J., van Genuchten, M. Th., Gribb, M. M., & Hopmans, J. (1998b). Parameter estimation of unsaturated soil hydraulic properties from transient flow processes. Soil Tillage Res, 47(1-2), 27-36. https://doi.org/10.1016/S0167-1987(98)00069-5 Simunek, J., & van Genuchten, M. Th. (1999). Using the HYDRUS-1D and HYDRUS-2D codes for estimating unsaturated soil hydraulic and solute transport parameters. In M. Th. van Genuchten, F. J. Leij, & L. Wu (Eds.) Characterization and measurement of the hydraulic properties of unsaturated porous media (pp. 1523-1536). University of California. Simunek, J. & van Genuchten, M. Th. (2008). Modeling Non equilibrium flow and transport processes using HYDRUS. Vadose Zone Journal, 7, 782-797. https://doi.org/10.2136/vzj2007.0074 Simunek, J., Neumann, L. E., & Cook F.J. (2011). Implementation of quadratic upstream interpolation schemes for solute transport into HYDRUS-1D. Environmental Modeling and Software, 26(11), 1298-1308. https://doi.org/10.1016/j.envsoft.2011.05.010 Simunek, J., van Genuchten, M. Th., & Sejna, M. (2012). HYDRUS: Model use calibration and validation. Procedures for Model Calibration and Validation Transactions of the ASABE, 55(4), 1261-1274. https://doi.org/10.13031/2013.42239 Simunek, J., Sejna, M., & van Genuchten, M. Th. (2013). The Hydrus-1D Software Package for Simulating the Movement of Water, Heat, and Multiple Solutes in Variably Saturated Media, version 4.17, HYDRUS Software Series 3. Department of Environmental Sciences, University of California. van Genuchten, M. Th. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America. 44(5), 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x | eng |
dc.rights.creativecommons | Esta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0. | eng |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | eng |
dc.type.driver | info:eu-repo/semantics/article | eng |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | eng |
dc.type.version | info:eu-repo/semantics/publishedVersion | eng |
dc.relation.citationvolume | 25 | spa |
dc.relation.citationissue | 1 | spa |
dc.relation.citationedition | Núm. 1 , Año 2022 : Enero-junio | spa |
dc.relation.ispartofjournal | Colombia forestal | spa |
dc.identifier.eissn | 2256-201X | |
dc.identifier.url | https://doi.org/10.14483/2256201X.18157 | |
dc.relation.citationstartpage | 21 | |
dc.relation.citationendpage | 35 | |
dc.relation.bitstream | https://revistas.udistrital.edu.co/index.php/colfor/article/download/18157/17809 | |
dc.relation.bitstream | https://revistas.udistrital.edu.co/index.php/colfor/article/download/18157/18055 | |
dc.type.content | Text | eng |
dspace.entity.type | Publication | eng |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Distrital tst 1 [372]