Mostrar el registro sencillo del ítem

dc.contributor.authorValverde, Juan Carlosspa
dc.date.accessioned2022-07-01 05:14:18
dc.date.accessioned2023-09-19T21:10:35Z
dc.date.available2022-07-01 05:14:18
dc.date.available2023-09-19T21:10:35Z
dc.date.issued2022-07-01
dc.identifier.issn0120-0739
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/44502
dc.description.abstractSe evaluó la influencia del espaciamiento en la estimación del índice de área foliar (IAF) en plantaciones de Eucalyptus tereticornis y Eucalyptus saligna. Por especie se analizaron tres espaciamientos: 1.0 x 2.0 m, 1.0 x 1.0 m y 1.0 x 0.5 m. Se midieron variables dasométricas y el IAF con dos métodos indirectos (LICOR 2000 y fotografía digital hemisférica, FDH) y un método directo. Los resultados no mostraron diferencias entre especies. En cambio, el espaciamiento influyó significativamente en el diámetro (a menor espaciamiento, menor diámetro) y en el IAF (a menor espaciamiento, mayor IAF), con variaciones de 2.11 a 3.96 m2.m-2. La evaluación de los métodos indirectos mostró que la reducción del espaciamiento incrementó el sesgo en la estimación. La FDH fue más exacta, con una tendencia a subestimar el IAF del 8 %. En cambio, LICOR 2000 mostró un sesgo elevado, con tendencia a sobrestimar el IAF hasta en un 31 %.spa
dc.description.abstractThe influence of spacing on the estimation of the leaf area index (LAI) in Eucalyptus tereticornis and Eucalyptus saligna plantations was evaluated. Three spacings per species were analyzed: 1.0 x 2.0 m, 1.0 x 1.0 m, and 1.0 x 0.5 m. Dasometric variables and the LAI were measured with two indirect methods (LICOR 2000 and digital hemispheric photography, DHP) and a direct method. The results showed no differences between species. On the other hand, spacing significantly influenced the diameter (less spacing, less diameter) and the LAI (less spacing, higher LAI), with variations from 2.11 to 3.96 m2.m-2. An evaluation of the indirect methods showed that, by reducing the spacing, the bias in the estimation increased. FDH showed greater accuracy and tended to underestimate the LAI by 7%. In contrast, LICOR 2000 showed a high bias, with a tendency to overestimate the LAI by up to 30%.eng
dc.format.mimetypeapplication/pdfspa
dc.format.mimetypetext/xmlspa
dc.language.isospaspa
dc.publisherUniversidad Distrital Francisco José de Caldasspa
dc.rightsColombia forestal - 2022spa
dc.rights.urihttps://creativecommons.org/licenses/by-sa/4.0/spa
dc.sourcehttps://revistas.udistrital.edu.co/index.php/colfor/article/view/18229spa
dc.subjectHemispheric photographyeng
dc.subjectLICOR-2000eng
dc.subjectAllometric equationeng
dc.subjectSpacingeng
dc.subjectCosta Ricaeng
dc.subjectFotografía hemisféricaspa
dc.subjectLICOR-2000spa
dc.subjectEcuación alométricaspa
dc.subjectEspaciamientospa
dc.subjectCosta Ricaspa
dc.titleEfecto del espaciamiento en la estimación indirecta del índice de área foliar en plantaciones dendroenergéticas de Eucaliptospa
dc.typeArtículo de revistaspa
dc.identifier.doi10.14483/2256201X.18229
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.localJournal articleeng
dc.title.translatedEffect of Spacing on the Indirect Estimation of the Leaf Area index in Eucalyptus Wood Energy Plantationseng
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.relation.referencesspa
dc.relation.referencesArias-Aguilar, D., Valverde, J. C., & Campos, R. (2020). Effect of planting density and tree species selection on forest bioenergy systems: tree growth, nutrient storage and wood chemical properties. Greenhouse Gases: Science and Technology, 10(6), 1165-1175. https://doi.org/10.1002/ghg.2008 Ariza-Carricondo, C., Di Mauro, F., de Beeck, M. O., Roland, M., Gielen, B., Vitale, D., Ceulemans, R., & Papale, D. (2019). A comparison of different methods for assessing leaf area index in four canopy types. Central European Forestry Journal, 65(2), 67-80. https://doi.org/10.2478/forj-2019-0011 Breda, N. J. (2003). Ground‐based measurements of leaf area index: a review of methods, instruments and current controversies. Journal of Experimental Botany, 54(392), 2403-2417. https://doi.org/10.1093/jxb/erg263 Broeckx, L., Verlinden, M., Vangronsveld, J., & Ceulemans, R. (2012). Importance of crown architecture for leaf area index of different Populus genotypes in a high-density plantation. Tree Physiology, 32(10), 1214-1226. https://doi.org/10.1093/treephys/tps083 Chen, J. M., & Cihlar, J. (1995). Plant canopy gap-size analysis theory for improving optical measurements of leaf-area index. Applied Optics, 34(27), 6211-6222. https://doi.org/10.1364/AO.34.006211 Chen, Y., Liu, J., Yao, X., Deng, Y., Hao, Z., Lin, L., Wu, N., & Yu, K. (2022). Effect of layer thickness and voxel size inversion on leaf area density based on the voxel-based canopy profiling method. Journal of Forestry Research, 2022. https://doi.org/10.1007/s11676-021-01440-7 Chianucci, F., Cutini, A., Corona, P., & Puletti, N. (2014). Estimation of leaf area index in understory deciduous trees using digital photography. Agricultural and Forest Meteorology, 198, 259-264. https://doi.org/10.1016/j.agrformet.2014.09.001 Chianucci, F., Puletti, N., Giacomello, E., Cutini, A., & Corona, P. (2015). Estimation of leaf area index in isolated trees with digital photography and its application to urban forestry. Urban Forestry & Urban Greening, 14(2), 377-382. https://doi.org/10.1016/j.ufug.2015.04.001 Confalonieri, R., Foi, M., Casa, R., Aquaro, S., Tona, E., Peterle, M., Boldini, A., De Carli, G., Ferrari, A., & Finotto, G. (2013). Development of an app for estimating leaf area index using a smartphone. Trueness and precision determination and comparison with other indirect methods. Computers and Electronics in Agriculture, 96, 67-74. https://doi.org/10.1016/j.compag.2013.04.019 Demarez, V., Duthoit, S., Baret, F., Weiss, M., & Dedieu, G. (2008). Estimation of leaf area and clumping indexes of crops with hemispherical photographs. Agricultural and Forest Meteorology, 148(4), 644-655. https://doi.org/10.1016/j.agrformet.2007.11.015 Dovey, S. B., & Du Toit, B. (2006). Calibration of LAI-2000 canopy analyser with leaf area index in a young eucalypt stand. Trees, 20(3), 273-277. https://doi.org/10.1007/s00468-005-0038-y Facchi, A., Baroni, G., Boschetti, M., & Gandolfi, C. (2010). Comparing opticaland direct methods for leafarea index determination in a maize crop. Journal of Agricultural Engineering, 41(1), 33-40. https://doi.org/10.4081/jae.2010.1.33 Hosseini, M., McNairn, H., Mitchell, S., Robertson, L. D., Davidson, A., Ahmadian, N., Bhattacharya, A., Borg, E., Conrad, C., & Dabrowska-Zielinska, K. (2021). A comparison between support vector machine and water cloud model for estimating crop leaf area index. Remote Sensing, 13(7), 1348. https://doi.org/10.1016/j.agrformet.2003.08.027 IMN (2021). Instituto Metereológico Nacional de Costa Rica. https://www.imn.ac.cr Jonckheere, I., Nackaerts, K., Muys, B., & Coppin, P. (2005). Assessment of automatic gap fraction estimation of forests from digital hemispherical photography. Agricultural and Forest Meteorology, 132(1-2), 96-114. https://doi.org/10.1016/j.agrformet.2005.06.003 Junior, H. J. E., de Melo, R. X., Sartori, M. M. P., Guerra, S. P. S., & Ballarin, A. W. (2016). Sustainable use of eucalypt biomass grown on short rotation coppice for bioenergy. Biomass and Bioenergy, 90, 15-21. https://doi.org/10.1016/j.biombioe.2016.03.037 Katabuchi, M. (2015). LeafArea: an R package for rapid digital image analysis of leaf area. Ecological Research, 30(6), 1073-1077. https://doi.org/10.1007/s11284-015-1307-x Lang, A. (1986). Leaf-area and average leaf angle from transmission of direct sunlight. Australian Journal of Botany, 34(3), 349-355. https://doi.org/10.1016/j.biombioe.2016.03.037 Lecomte, X., Paulo, J., Tomé, M., Veloso, S., Firmino, P., Faias, S., & Caldeira, M. (2022). Shrub understorey clearing and drought affects water status and growth of juvenile Quercus suber trees. Forest Ecology and Management, 503, 119760. https://doi.org/10.1016/j.foreco.2021.119760 Liang, L., Qin, Z., Zhao, S., Di, L., Zhang, C., Deng, M., Lin, H., Zhang, L., Wang, L., & Liu, Z. (2016). Estimating crop chlorophyll content with hyperspectral vegetation indices and the hybrid inversion method. International Journal of Remote Sensing, 37(13), 2923-2949. https://doi.org/10.1080/01431161.2016.1186850 Liu, Z., Jin, G., & Qi, Y. (2012). Estimate of leaf area index in an old-growth mixed broadleaved-Korean Pine Forest in Northeastern China. PloS one, 7(3), e32155. https://doi.org/10.1016/j.agrformet.2012.10.009 Mason, E. G., Diepstraten, M., Pinjuv, G. L., & Lasserre, J.-P. (2012). Comparison of direct and indirect leaf area index measurements of Pinus radiata D. Don. Agricultural and Forest Meteorology, 166, 113-119. https://doi.org/10.1016/j.agrformet.2012.06.013 Meinzer, F., Goldstein, G., & Andrade, J. (2001). Regulation of water flux through tropical forest canopy trees: do universal rules apply? Tree Physiology, 21(1), 19-26. https://doi.org/10.1093/treephys/21.1.19 Mougin, E., Demarez, V., Diawara, M., Hiernaux, P., Soumaguel, N., & Berg, A. (2014). Estimation of LAI, fAPAR and fCover of Sahel rangelands (Gourma, Mali). Agricultural and Forest Meteorology, 198, 155-167. https://doi.org/10.1016/j.agrformet.2014.08.006 Oberski, D. (2014). lavaan. survey: An R package for complex survey analysis of structural equation models. Journal of Statistical Software, 57, 1-27. https://doi.org/10.18637/jss.v057.i01 Panda, S. S., Amatya, D. M., Muwamba, A., & Chescheir, G. (2019). Estimation of evapotranspiration and its parameters for pine, switchgrass, and intercropping with remotely-sensed images based geospatial modeling. Environmental Modelling & Software, 121, 104487. https://doi.org/10.1016/j.envsoft.2019.07.012 Qu, Y., Gao, Z., Shang, J., Liu, J., & Casa, R. (2021). Simultaneous measurements of corn leaf area index and mean tilt angle from multi-directional sunlit and shaded fractions using downward-looking photography. Computers and Electronics in Agriculture, 180, 105881. https://doi.org/10.1016/j.compag.2020.105881 R Core Team (2013). R: A language and environment for statistical computing [Computer software]. The R Foundation. Raj, R., Walker, J. P., Pingale, R., Nandan, R., Naik, B., & Jagarlapudi, A. (2021). Leaf area index estimation using top-of-canopy airborne RGB images. International Journal of Applied Earth Observation and Geoinformation, 96, 102282. https://doi.org/10.1016/j.jag.2020.102282 Regent Instrument (2012). WinFOLIA pro 2012 [Computer software]. Regent Instrument Inc. Schwerz, F., Eloy, E., Elli, E. F., & Caron, B. O. (2019). Reduced planting spacing increase radiation use efficiency and biomass for energy in black wattle plantations: Towards sustainable production systems. Biomass and Bioenergy, 120, 229-239. https://doi.org/10.1016/j.biombioe.2018.11.034 Schwerz, F., Neto, D. D., Caron, B. O., Nardini, C., Sgarbossa, J., Eloy, E., Behling, A., Elli, E. F., & Reichardt, K. (2020). Biomass and potential energy yield of perennial woody energy crops under reduced planting spacing. Renewable Energy, 153, 1238-1250. https://doi.org/10.1016/j.renene.2020.02.074 Tenorio, C., Moya, R., Valverde, J. C., & Arias-Aguilar, D. (2019). Biomass production and characteristics of short rotation plantations of clones of in three spacings. Silvae Genetica, 68(1), 92-100. https://doi.org/10.2478/sg-2019-0017 Tun, T. N., Guo, J., Fang, S., & Tian, Y. (2018). Planting spacing affects canopy structure, biomass production and stem roundness in poplar plantations. Scandinavian Journal of Forest Research, 33(5), 464-474. https://doi.org/10.1080/02827581.2018.1457711 Tustin, D., Breen, K., & van Hooijdonk, B. (2022). Light utilisation, leaf canopy properties and fruiting responses of narrow-row, planar cordon apple orchard planting systems—A study of the productivity of apple. Scientia Horticulturae, 294, 110778. https://doi.org/10.1016/j.scienta.2021.110778 Valverde, J. C., & Arias, D. (2018). Variation of physiological parameters in juvenile treetops of Eucalyptus tereticornis from a three-dimensional perspective. Espirales Revista Multidisciplinaria de Investigación, 2(23), 399. https://doi.org/10.31876/re.v2i23.399 Valverde, J. C., & Arias, D. (2020). Evaluación del índice de área foliar con método indirecto y directo en distintas condiciones ambientales en plantaciones dendroenergéticas de Eucalyptus tereticornis Sm. Madera y Bosques, 26(2), e2621953. https://doi.org/10.21829/myb.2020.262195 Valverde, J. C., Guevara-Bonilla, M., Arias, D., Briceño, E., & Esquivel, E. (2017). Efectos de las actividades de labranza en el índice de área foliar en una plantación de Tectona grandis en la zona norte de Costa Rica. Madera y bosques, 23(2), 7-19. https://doi.org/10.21829/myb.2017.232498 Valverde, J. C., Quesada, R., Soto, C., & Arias, D. (2020). Validación de un protocolo fotográfico para la digitalización de muestras de herbario de especies tropicales. Revista Científica, 38(2), 147-159. https://doi.org/10.14483/23448350.15362 Vyas, D., Mehta, N., Dinakaran, J., & Krishnayya, N. (2010). Allometric equations for estimating leaf area index (LAI) of two important tropical species (Tectona grandis and Dendrocalamus strictus). Journal of forestry research, 21(2), 197-200. https://doi.org/10.1007/s11676-010-0032-0 Wang, P., Tong, L., Zhou, X., Gang, X., Gao, B., Li, Y., & Sun, Y. (2021, July 11-16). Estimation of leaf area index based on hemispherical canopy photography [Conference presentation]. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Bruselas, Bélgica. https://doi.org/10.1109/IGARSS47720.2021.9554699 Wei, S., Yin, T., Dissegna, M. A., Whittle, A. J., Ow, G. L. F., Yusof, M. L. M., Lauret, N., & Gastellu-Etchegorry, J.-P. (2020). An assessment study of three indirect methods for estimating leaf area density and leaf area index of individual trees. Agricultural and Forest Meteorology, 292, 108101. https://doi.org/10.1016/j.agrformet.2020.108101 Weiss, M., & Baret, F. (2017). CAN_EYE, version 6.4.91 [Computer software]. IRAE. https://www6.paca.inrae.fr/can-eye/ Weiss, M., Baret, F., Smith, G., Jonckheere, I., & Coppin, P. (2004). Review of methods for in situ leaf area index (LAI) determination: Part II. Estimation of LAI, errors and sampling. Agricultural and Forest Meteorology, 121(1-2), 37-53. https://doi.org/10.1016/j.agrformet.2003.08.027 Wengert, M., Piepho, H.-P., Astor, T., Graß, R., Wijesingha, J., & Wachendorf, M. (2021). Assessing spatial variability of barley whole crop biomass yield and leaf area index in silvoarable agroforestry systems using UAV-borne remote sensing. Remote Sensing, 13(14), 2751. https://doi.org/10.3390/rs13142751 Xiao, C.-W., Janssens, I., Curiel Yuste, J., & Ceulemans, R. (2006). Variation of specific leaf area and upscaling to leaf area index in mature Scots pine. Trees, 20(3), 304-310. https://doi.org/10.1007/s00468-005-0039-x Yan, G., Hu, R., Luo, J., Weiss, M., Jiang, H., Mu, X., Xie, D., & Zhang, W. (2019). Review of indirect optical measurements of leaf area index: Recent advances, challenges, and perspectives. Agricultural and Forest Meteorology, 265, 390-411. https://doi.org/10.1016/j.agrformet.2018.11.033 Yang, T., Duan, Z., Zhu, Y., Gan, Y., Wang, B., Hao, X., Xu, W., Zhang, W., & Li, L. (2019). Effects of distance from a tree line on photosynthetic characteristics and yield of wheat in a jujube tree/wheat agroforestry system. Agroforestry Systems, 93(4), 1545-1555. https://doi.org/10.1007/s10457-018-0267-xspa
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.relation.citationvolume25spa
dc.relation.citationissue2spa
dc.relation.citationeditionNúm. 2 , Año 2022 : Julio-diciembrespa
dc.relation.ispartofjournalColombia forestalspa
dc.identifier.eissn2256-201X
dc.identifier.urlhttps://doi.org/10.14483/2256201X.18229
dc.relation.citationstartpage17
dc.relation.citationendpage29
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/18229/18292
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/18229/18362
dc.type.contentTextspa
dspace.entity.typePublicationspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Colombia forestal - 2022
Excepto si se señala otra cosa, la licencia del ítem se describe como Colombia forestal - 2022