Mostrar el registro sencillo del ítem

dc.contributor.authorQuinto Mosquera, Harleyspa
dc.contributor.authorMoreno-Hurtado, Flavio H.spa
dc.date.accessioned2022-07-01 05:14:18
dc.date.accessioned2023-09-19T21:10:36Z
dc.date.available2022-07-01 05:14:18
dc.date.available2023-09-19T21:10:36Z
dc.date.issued2022-07-01
dc.identifier.issn0120-0739
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/44503
dc.description.abstractEl crecimiento arbóreo tiene gran relevancia en la mitigación del cambio climático. Se ha planteado que, en bosques tropicales, el crecimiento está relacionado con la fertilidad edáfica. Dado que el Pacífico colombiano es una región lluviosa y con suelos pobres en nutrientes, se evaluó cómo las condiciones edáficas explican el crecimiento arbóreo. Para ello se determinó el crecimiento diamétrico arbóreo (CDA) a nivel de parcelas, especies y grupos ecológicos, y se relacionó con las variables físicas y químicas del suelo. Se observó que el CDA en árboles con baja densidad de madera se correlacionó de manera positiva con la materia orgánica (MO), nitrógeno y arena, y de manera negativa con fósforo, limo y arcilla. La familia Fabaceae se correlacionó positivamente con pH, MO, nitrógeno, magnesio y arena, y negativamente con la capacidad de intercambio catiónica efectiva (CICE), limo, arcilla y aluminio. Por consiguiente, se corroboró una limitación nutricional múltiple, que resalta que el crecimiento puede ser condicionado por nutrientes abundantes del suelo, no solo por su escasez limitante.spa
dc.description.abstractTree growth has great relevance in mitigating climate change. It has been suggested that, in tropical forests, growth is related to edaphic fertility. Given that the Colombian Pacific is a rainy region with nutrient-poor soils, the way in which edaphic conditions explain tree growth was evaluated. To this effect, the tree diameter growth (CDA) was determined at the level of plots, species, and ecological groups, and it was related to the physical and chemical variables of the soil. It was observed that the CDA in trees with low wood density was positively correlated with organic matter (MO), nitrogen, and sand, and it was negatively correlated with with P, silt, and clay. The Fabaceae family was positively correlated with pH, MO, nitrogen, magnesium, and sand, and negatively so with the effective cation exchange capacity (CICE), silt, clay, and aluminum. Consequently, a multiple nutritional limitation was corroborated, which highlights the fact that growth can be conditioned by abundant nutrients in the soil, not only by their limiting scarcity.eng
dc.format.mimetypeapplication/pdfspa
dc.format.mimetypetext/xmlspa
dc.language.isospaspa
dc.publisherUniversidad Distrital Francisco José de Caldasspa
dc.rightsColombia forestal - 2022spa
dc.rights.urihttps://creativecommons.org/licenses/by-sa/4.0/spa
dc.sourcehttps://revistas.udistrital.edu.co/index.php/colfor/article/view/18232spa
dc.subjectBosques tropicalesspa
dc.subjectFertilidad del suelospa
dc.subjectFabaceaespa
dc.subjectMateria orgánicaspa
dc.subjectNitrógenospa
dc.subjectTropical forestseng
dc.subjectSoil fertilityeng
dc.subjectFabaceaeeng
dc.subjectOrganic mattereng
dc.subjectNitrogeneng
dc.titleInfluencia de los nutrientes del suelo sobre el crecimiento arbóreo en bosques del Pacífico colombianospa
dc.typeArtículo de revistaspa
dc.identifier.doi10.14483/2256201X.18232
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.localJournal articleeng
dc.title.translatedInfluence of Soil Nutrients on Tree Growth in Colombian Pacific Forestseng
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.relation.referencesAngelsen, A., Brockhaus, M., Kanninen, M., Sills, E., Sunderlin, W., & Wertz-Kanounnikoff, S. (2009). Realising REDD+: National strategy and policy options. CIFOR. http://www.cifor.org/publications/pdf_files/books/bangelsen1201-references.pdf Alder, D., Oavika, F., Sánchez, M., Silva, J., Hout, P., & Wright, H. (2002). A comparison of species growth rates from four moist tropical forest regions using increment-size ordination. International Forestry Review, 4(3), 196-205. https://doi.org/10.1505/IFOR.4.3.196.17398 Ashton, P., & Hall, P. (1992). Comparisons of structure among mixed dipterocarp forests of north-western Borneo. Journal of Ecology, 80(3), 459-481. https://doi.org/10.2307/2260691 Angiosperm Phylogeny Group (APG IV) (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 181(1), 1-20. https://doi.org/10.1111/boj.12385 Austin, A., & Vitousek, P. (1998). Nutrient dynamics on a precipitation gradient in Hawaii. Oecologia 113, 519-529. https://doi.org/10.1007/s004420050405 Baker, T., Phillips, O., Malhi, Y., Almeida, S., Arroyo, L., di Fiore, A., Erwin, T., Killeen, T., Laurance, S., Laurance, W., Lewis, S., Lloyd, J., Monteagudo, A., Neill, D., Patiño, S., Pitman, N., Silva, J., & Vásquez-Martínez. R. (2004). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology, 10(5), 545-562. https://doi.org/10.1111/j.1365-2486.2004.00751.x Baker, T., Swaine, M., & Burslem, D. (2003). Variation in tropical forest growth rates: combined effects of functional group composition and resource availability. Perspectives in Plant Ecology, Evolution and Systematics, 6(1), 21-36. https://doi.org/10.1078/1433-8319-00040 Baribault, T., Kobe, R., & Finley, A. (2012). Tropical tree growth is correlated with soil phosphorus, potassium, and calcium, though not for legumes. Ecological Monographs, 82(2), 189-203. https://www.jstor.org/stable/41739364 Brown, S. (1997). Estimating biomass and biomass change of tropical forests: A primer. Food and Agriculture Organization. http://www.fao.org/3/w4095e/w4095e00.htm Büntgen, U., Krusic, P. J., Piermattei, A. Coomes, D., Esper, J., Myglan, V., Kirdyanov, A., Camarero, J., Crivellaro, A., & Körner, C. (2019). Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming. Nature Communications, 10, 2171. https://doi.org/10.1038/s41467-019-10174-4 Chambers, J., Higuchi, N., & Schimel, J. (1998). Ancient trees inAmazonia. Nature, 391, 135-136. https://doi.org/10.1038/34325 Chapin III, F. (1980). The mineral nutrition of wild plants. Annual Review of Ecology and Systematics, 11, 233-260 https://doi.org/10.1146/annurev.es.11.110180.001313 Clark, D., Clark, D., & Read, J. (1998). Edaphic variation and the mesoscale distribution of tree species in a Neotropical rain forest. Journal of Ecology, 86(1), 101-112. https://doi.org/10.1046/j.1365-2745.1998.00238.x Clark, D., Hurtado, J., & Saatchi, S. (2015). Tropical rain forest structure, tree growth and dynamics along a 2700-m elevational transect in Costa Rica. PLoS ONE, 10(4), e0122905. https://doi.org/10.1371/journal.pone.0122905 Clark, D. (2002). Are tropical forests an important carbon sink? Reanalysis of the long-term plot data. Ecological Applications, 12(1), 3-7. https://doi.org/10.1890/1051-0761(2002)012[0003:ATFAIC]2.0.CO;2 Clark, D., Brown, S., Kicklighter, D., Chambers, J., Thomlinson, J., Holland, E., & Ni, J. (2001). Net primary production in forest: an evaluation and sinthesis of existing field data. Ecological Aplications, 11(2), 356- 370. https://doi.org/10.1890/1051-0761(2001)011[0371:NPPITF]2.0.CO;2 Dalling, J., Heineman, K., López, O., Wright, J., & Turner, B. (2016). Nutrient availability in tropical rain forests: The paradigm of phosphorus limitation. En G. Goldstein & L. S. Santiago (Eds.), Tropical tree physiology. Adaptations and responses in a changing environment (pp. 261-273). Springer International Publishing. https://doi.org/10.1007/978-3-319-27422-5_12 Davidson, E. A., & Howarth, R. W. (2007). Environmental science: Nutrients in synergy. Nature, 449, 1000-1001. https://doi.org/10.1038/4491000a Dixon, R., Brown, S., Houghton, R., Solomon, A., Trexler, M., & Wisniewski, J. (1994). Carbon pools and flux of global forest ecosystems. Science, 263(5144), 185-190. https://science.sciencemag.org/content/263/5144/185 Field, C., Behrenfeld, M., Randerson, J., & Falkowski, P. (1998). Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 281(5374), 237-240. https://doi.org/10.1126/science.281.5374.237 García, F., Ramos, Y., Palacios, J., Arroyo, J., Mena, A., & González, M. (2003). SALERO Diversidad biológica de un bosque pluvial tropical (bp-T). Editorial Guadalupe Ltda. Gentry, A. (1993). A field guide to the families and genera of woody plants of Northwest South Amercian. Conservation International. Houghton, R. (2005). Aboveground forest biomass and the global carbon balance. Global Change Biology, 11(6), 945-958. https://doi.org/10.1111/j.1365-2486.2005.00955.x Intergovernmental Panel on Climate Change IPCC (2014). Climate Change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC. https://www.ipcc.ch/report/ar5/syr/ Instituto de Investigaciones Ambientales del Pacífico (IIAP) (2015). Plan integral de cambio climático del departamento del Chocó (PICC-Chocó). Ministerio de Ambiente y Desarrollo Sostenible, IIAP. Iversen, C., & Norby, R. (2008). Nitrogen limitation in a sweetgum plantation: Implications for carbon allocation and storage. Canadian Journal of Forest Research, 38(5), 1021-1032. https://doi.org/10.1139/X07-213 Lambers, H., Chapin III., F., & Pons, T. (2008). Plant physiological ecology (2da ed.). Springer Science Business Media. LeBauer, D., & Treseder, K. (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89(2), 371-379. https://doi.org/10.1890/06-2057.1 Melo, O., & Vargas, R. (2003). Evaluación ecológica y silvicultural de ecosistemas boscosos. Universidad del Tolima, Impresiones CONDE. Myers, N., Mittermeier, R., Mittermeier, C., Da Fonseca, G., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853-858. https://doi.org/10.1038/35002501 Oelmann, Y., Potvin, C., Mark, T., Werther, L., Tapernon, S., & Wilcke. W. (2010). Tree mixture effects on aboveground nutrient pools of trees in an experimental plantation in Panama. Plant and Soil, 326(1), 199-212. https://doi.org/10.1007/s11104-009-9997-x Paoli, G., & Curran, L. (2007). Soil nutrients limit fine litter production and tree growth in mature lowland forest of southwestern Borneo. Ecosystems, 10, 503-518 https://doi.org/10.1007/s10021-007-9042-y Posada, J., & Schuur, E. (2011). Relationships among precipitation regime, nutrient availability, and carbon turnover in tropical rain forests. Oecologia, 165,783-795. https://doi.org/10.1007/s00442-010-1881-0 Poveda, G., & Mesa O. (2000). On the existence of Lloró (the rainiest locality on Earth): enhanced ocean-land-atmosphere interaction by a low level jet. Geophysical Research Letters, 27(11), 1675-1678. https://doi.org/10.1029/1999GL006091 Poveda, I., Rojas, C., Rudas, A., & Rangel, O. (2004). El Chocó biogeográfico: ambiente físico. En O. Rangel (Ed.). 2004. Colombia diversidad biótica IV. El Chocó biogeográfico/costa pacífica. Instituto de Ciencias Naturales, Universidad Nacional de Colombia. Quesada, R., Acosta, L., Garro, M., & Castillo, M. (2012). Dinámica del crecimiento del bosque húmedo tropical, 19 años después de la cosecha bajo cuatro sistemas de aprovechamiento forestal en la Península de Osa, Costa Rica. Revista Tecnología en Marcha, 25(5), 56-66. https://doi.org/10.18845/tm.v25i5.474 Quinto-Mosquera, H., & Moreno-Hurtado, F. (2011). Dinámica de la biomasa aérea en un bosque pluvial tropical del Chocó Biogeográfico. Revista Facultad Nacional de Agronomía, 64(1), 5917-5936. https://repositorio.unal.edu.co/handle/unal/38557 Quinto-Mosquera, H., & Moreno-Hurtado, F. (2014). Diversidad florística arbórea y su relación con el suelo en un bosque pluvial tropical del Chocó biogeográfico. Revista Árvore, 38(6), 1123-1132. https://doi.org/10.1590/S0100-67622014000600017 Quinto-Mosquera, H., & Moreno-Hurtado, F. (2016). Precipitation effects on soil characteristics in tropical rain forests of the Chocó biogeographical region. Revista Facultad Nacional de Agronomía, 69(1), 7813-7823. http://dx.doi.org/10.15446/rfna.v69n1.54749 Quinto-Mosquera, H., & Moreno, F. (2017a). Net primary productivity and edaphic fertility in two pluvial tropical forests in the Chocó biogeographical region of Colombia. PLoS ONE, 12(1), e0168211. https://doi.org/10.1371/journal.pone.0168211 Quinto-Mosquera, H., Rivas-Urrutia, Y., & Moreno-Hurtado F. (2017b). Efectos de la fertilización del suelo sobre el crecimiento arbóreo en bosques pluviales tropicales del Chocó, Colombia. Revista de Biología Tropical, 65(3), 1161-1173. http://dx.doi.org/10.15517/rbt.v65i3.29442 Quinto-Mosquera, H., Hurtado, D., & Arboleda, J. (2019). Influencia de las condiciones edaficas sobre la dominancia y diversidad de arboles en bosques pluviales tropicales del Chocó biogeografico. Revista de Biología Tropical, 67(6), 1278-1291. http://dx.doi.org/10.15517/rbt.v67i6.37517 R Development Core Team. (2012). R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org/ Restrepo, H., Orrego, S., Salazar-Uribe, J., Bullock, B., & Montes, C. (2019). using biophysical variables and stand density to estimate growth and yield of Pinus patula in Antioquia, Colombia. Open Journal of Forestry, 9, 195-213. https://doi.org/10.4236/ojf.2019.93010 Reed, S. C., Townsend, A. R., Taylor, P. G., & Cleveland C. C. (2011). Phosphorus cycling in tropical forests growing on highly weathered soils. En E. Bünemann, A. Oberson, & E. Frossard (Eds.) Phosphorus in Action (pp. 339-369). Springer. https://doi.org/10.1007/978-3-642-15271-9_14 Rüger, N., Berger, U., Hubbell, S., Vieilledent, G., & Condit R. (2011). Growth strategies of tropical tree species: Disentangling light and size effects. PLoS ONE, 6(9): e25330. https://doi.org/10.1371/journal.pone.0025330 Russo, S., Davies, S., King, D., & Tan, S. (2005). Soil-related performance variation and distributions of tree species in a Bornean rain forest. Journal of Ecology, 93(5), 879-889. https://doi.org/10.1111/j.1365-2745.2005.01030.x Salisbury, F., & Ross, C. (1994). Fisiología vegetal (4ta ed.). Grupo Editorial Iberoamérica S.A. de C.V. Santiago, L., Schuur, E., & Silvera, K. (2005). Nutrient cycling and plant-soil feedbacks along a precipitation gradient in lowland Panama. Journal of Tropical Ecology, 21(4), 461-470. https://doi.org/10.1017/S0266467405002464 Sayer, E., Wright, J., Tanner, E., Yavitt, J., Harms, K., Powers, J., Kaspari, M., García, M., & Turner, B. (2012). Variable responses of lowland tropical forest nutrient status to fertilization and litter manipulation. Ecosystems, 15(3), 387-400. https://doi.org/10.1007/s10021-011-9516-9 Schlesinger, W. (1997). Biogeochemistry: An analysis of global change. Academic Press. Soong, J., Janssens, I., Grau, O., Margalef, O., Stahl, C., van Langenhove, L., Urbina, I., Chave, J., Dourdain, A., Ferry, B., Freycon, V., Herault, B., Sardans, J., Peñuelas, J., & Verbruggen, E. (2020). Soil properties explain tree growth and mortality, but not biomass, across phosphorus-depleted tropical forests. Scientific Reports, 10, 2302. https://doi.org/10.1038/s41598-020-58913-8 Statistical Graphics Corp. (2002). Statgraphics Plus Centurium XV, versión 19. https://www.statgraphics.com Sullivan, B., Alvarez-Clare, S., Castle, S., Porder, S., Reed, S., Schreeg, L., Cleveland, C., & Townsend, A. (2014). Assessing nutrient limitation in complex forested ecosystems: alternatives to large-scale fertilization experiments. Ecology, 95(3), 668-681. https://doi.org/10.1890/13-0825.1 Tanner E., Kapos, V., & Franco, W. (1992). Nitrogen and phosphorus fertilization effects on Venezuelan montane forest trunk growth and litterfall. Ecology, 73(1), 78-86. https://doi.org/10.2307/1938722 Toledo, M., Poorter, L., Peña-Claros, A., Alarcón, M., Balcázar, J., Leaño, C., Licona, J., Llanque, O., Vroomans, V., Zuidema P., & Bongers, F. (2011). Climate is a stronger driver of tree and forest growth rates than soil and disturbance. Journal of Ecology, 99(1), 254-264. https://doi.org/10.1111/j.1365-2745.2010.01741.x Treseder, K., & Vitousek, P. (2001). Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests. Ecology, 82(4), 946-954. https://doi.org/10.1890/0012-9658(2001)082[0946:EOSNAO]2.0.CO;2 Turner, I. M. (2001). The ecology of trees in the tropicals rain forest. Cambridge University Press. https://doi.org/10.1017/CBO9780511542206 Vitousek, P., Porder, S., Houlton, B., & Chadwick, O. (2010). Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen–phosphorus interactions. Ecological Applications, 20(1), 5-15. https://doi.org/10.1890/08-0127.1 Vitousek, P. (1984). Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65(1), 285-298. https://doi.org/10.2307/1939481 Whitmore, T. (1998). An introduction to tropical rain forests (2da ed.). Oxford University Press. Wright, J., Yavitt, J., Wurzburger, N., Turner, B., Tanner, E., Sayer, E., Santiago, L., Kaspari, M., Hedin, L., Harms, K., García, M., & Corre, M. (2011). Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology, 92(8), 1616-1625. https://doi.org/10.1890/10-1558.1spa
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.relation.citationvolume25spa
dc.relation.citationissue2spa
dc.relation.citationeditionNúm. 2 , Año 2022 : Julio-diciembrespa
dc.relation.ispartofjournalColombia forestalspa
dc.identifier.eissn2256-201X
dc.identifier.urlhttps://doi.org/10.14483/2256201X.18232
dc.relation.citationstartpage30
dc.relation.citationendpage44
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/18232/18299
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/18232/18363
dc.type.contentTextspa
dspace.entity.typePublicationspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Colombia forestal - 2022
Excepto si se señala otra cosa, la licencia del ítem se describe como Colombia forestal - 2022