Mostrar el registro sencillo del ítem

dc.contributor.authorMercado Gómez, Jorgespa
dc.contributor.authorArroyoMartínez, Jesús Davidspa
dc.contributor.authorÁlvarez Pérez , Pedro Joséspa
dc.date.accessioned2023-01-01 00:00:00
dc.date.accessioned2023-09-19T21:10:41Z
dc.date.available2023-01-01 00:00:00
dc.date.available2023-09-19T21:10:41Z
dc.date.issued2022-01-01
dc.identifier.issn0120-0739
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/44517
dc.description.abstractEste estudio analizó la estructura de comunidades de epífitas vasculares en dos localidades de los Montes de María (Chalán y Morroa). Se calcularon las curvas de rango-abundancia, rarefacción e interpolación-extrapolación y la diversidad alfa de las dos localidades. Además, la diversidad alfa y beta fueron estimadas en cinco estratos verticales de los forófitos. La diversidad beta se calculó con el número efectivo de comunidades y el índice de disimilitud de Bray-Curtis. Se identificó un total de 3 familias, 10 géneros y 13 especies. Orchidaceae fue la familia más rica, y Encyclia sp. y Tillandsia fueron los géneros más abundantes. Chalán es la localidad más diversa, y Anacardium excelsum es el forófito más habitado. Se hallaron por lo menos dos ensamblajes de especies relacionados con el dosel medio y alto, los cuales son el resultado del recambio de especies. Estos resultados contribuyen al conocimiento de las epífitas en el bosque seco tropical colombiano.spa
dc.description.abstractThis study analyzed the community structure of vascular epiphytes in two localities of Montes de María (Chalán and Morroa). Rank-abundance, rarefaction, and interpolation-extrapolation curves were calculated, as well as the alpha diversity of the two localities. Alpha and beta diversity were estimated in five vertical phorophyte strata. The beta diversity was calculated using the effective number of communities and the Bray-Curtis dissimilarity index. A total of three families, 10 genera, and 13 species was identified. Orchidaceae was the family with the most species, and Encyclia sp. and Tillandsia were the most abundant genera. Chalán is the most diverse locality, and Anacardium excelsum is the most inhabited phorophyte. At least two species assemblages related to the middle and upper canopy were found, which are the result of species turnover. These results contribute to the knowledge of epiphytes in the Colombian tropical dry forest.eng
dc.format.mimetypeapplication/pdfspa
dc.format.mimetypetext/xmlspa
dc.language.isospaspa
dc.publisherUniversidad Distrital Francisco José de Caldasspa
dc.rightsColombia forestal - 2023spa
dc.rights.urihttps://creativecommons.org/licenses/by-sa/4.0/spa
dc.sourcehttps://revistas.udistrital.edu.co/index.php/colfor/article/view/19375spa
dc.subjectAbundanciaspa
dc.subjectestructuraspa
dc.subjectforófitosspa
dc.subjectrecambiospa
dc.subjectriquezaspa
dc.subjectAbundanceeng
dc.subjectstructureeng
dc.subjectphorophyteseng
dc.subjectturnovereng
dc.subjectrichnesseng
dc.titleDiversidad y distribución espacial de epífitas vasculares en fragmentos de bosque seco tropical del Caribe colombianospa
dc.typeArtículo de revistaspa
dc.identifier.doi10.14483/2256201X.19375
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.localJournal articleeng
dc.title.translatedDiversity and Vertical Distribution of Vascular Epiphytes in Tropical Dry Forest Fragments of the Colombian Caribbeaneng
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.relation.referencesAcebey, A., & Krömer, T. (2001). Diversidad y distribucíon vertical de epífitas en los alrededores del campamento Rio Eslabón y de la laguna Chalalán, Parque Nacional Madidi, Dpto. la Paz, Bolivia. Revista de la Sociedad Boliviana de Botánica, 3, 104-123. Álvarez-Arnesi, E., Barberis, I., & Vesprini, J. L. (2018). Distribución de epífitas vasculares sobre cuatro especies arbóreas en un bosque xerofítico del Chaco Húmedo, Argentina. Ecología Austral, 28, 480-495. https://doi.org/10.25260/EA.18.28.3.0.694 Andrade, J. L., & Nobel, P. S. (1997). Microhabitats and water relations of epiphytic cacti and ferns in a lowland neotropical forest. Biotropica, 29 (3), 261-270. https://doi.org/10.1111/j.1744-7429.1997.tb00427.x Arévalo, R. & Betancur, J. (2006). Vertical distribution of vascular epiphytes in four forest types of the Serranía de Chiribiquete, Colombian Guayana. Selbyana, 27(2), 175-185. https://botanica.uniandes.edu.co/investigacion/pdfs/Arevalo-Chiribiquete%20Epiphytes.pdf Banda, K., Delgado-Salinas, A., Dexter, K. G., Linares-Palomino, R., Oliveira-Filho, A., Prado, D. Pullan, M., Quintana, C., Riina, R., Rodríguez, G. M., Weintritt, J., Acevedo-Rodríguez, P., Adarve, J., Álvarez, E., Aranguren, A., Arteaga, J. C., Aymard, G., Castaño, A., Ceballos-Mago, N. … Pennington, R. T. (2016). Plant diversity patterns in neotropical dry forests and their conservation implications. Science, 353 (6306), 1383-1387. https://doi.org/10.1126/science.aaf5080 Barker, M. G., & Sutton, S. L. (1997). Low-tech methods for forest canopy access. Biotropica, 29 (2), 243-247. https://doi.org/10.1111/j.1744-7429.1997.tb00032.x Baselga, A. (2017). Partitioning abundance-based multiple-site dissimilarity into components: balanced variation in abundance and abundance gradients. Methods in Ecology and Evolution, 8(7), 799-808. https://doi.org/10.1111/2041-210X.12693 Baselga, A., & Orme, C. D. L. (2012). betapart: An R package for the study of beta diversity. Methods in Ecology and Evolution, 3(5), 808-812. https://doi.org/10.1111/j.2041-210X.2012.00224.x Benzing, D. (1990). Vascular epiphytes. General biology and related biota Cambridge University Press. Carbonó-Delahoz, E., Barros-Barraza, A., & Jiménez-Vergara, J. (2013). Cactaceae de Santa Marta, Magdalena, Colombia. Revista Academia Colombiana de Ciencias Exactas, 37(143), 177-187. Chao, A., Gotelli, N. J., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K., & Ellison, A. M. (2014a). Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs, 84(1), 45-57. https://doi.org/10.1890/13-0133.1 Chao, A., Gotelli, N. J., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K., & Ellison, A.M. (2014b). Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs, 84(1), 1557-7015. https://doi.org/10.1890/13-0133.1 Colwell, R., Chao, A. Gotelli, N. Lin, S.-Y., Mao, C.-X., Chazdon, R. L., & Jhon T. L. (2012). Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. Journal of Plant Ecology, 5(1), 3-21. https://doi.org/10.1093/jpe/rtr044 Cornwell, W., & Ackerly, D. (2009). Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs, 79, 109-126. https://doi.org/10.1890/07-1134.1 de la Rosa-Manzano, E. Guerra-Pérez, A. Mendieta-Leiva, G. Mora-Olivo, A. Martínez-Ávalos, J. G., & Arellano-Méndez, L. U. (2017). Vascular epiphyte diversity in two forest types of the “El Cielo” Biosphere Reserve, Mexico. Botany, 95(6), 599-610. https://doi.org/10.1139/cjb-2016-0184 Díaz-Pérez, C. Morales-Puentes, M. Gil-Leguizamón, P. Gil-Novoa, J., & Mercado-Gómez, J. (2019). Vegetación asociada al hábitat de anfibios y reptiles en el bosque seco tropical del Cesar y Magdalena. En F. Vargas-Salinas, J. Muñoz-Avila & M. Morales-Puentes (Eds.), Biología de Anfibios y Reptiles en el Bosque Seco Tropical del Norte de Colombia (pp. 6-55). Buhos Tunja. Dislich, R., & Mantovani, W. (2015). Vascular epiphyte assemblages in a Brazilian Atlantic Forest fragment: investigating the effect of host tree features. Plant Ecology, 217, 1-12. https://doi.org/10.1007/s11258-015-0553-x Emerson, B. C., & Gillespie, R. G. (2008). Phylogenetic analysis of community assembly and structure over space and time. Trends in Ecology & Evolution, 23(11), 619-630. https://doi.org/10.1016/j.tree.2008.07.005 Flores-Palacios, A. García-Franco, J. G., & Capistrán-Barradas, A. (2015). Biomass, phorophyte specificity and distribution of Tillandsia recurvata in a tropical semi-desert environment (Chihuahuan Desert, Mexico). Plant Ecology and Evolution, 148(1), 68-75. https://doi.org/10.5091/plecevo.2015.874 Francisco, T. M., Couto, D. R., Garbin, M. L., Muylaert, R. L., & Ruiz-Miranda, C. R. (2019). Low modularity and specialization in a commensalistic epiphyte-phorophyte network in a tropical cloud forest. Biotropica, 51(4), 509-518. https://doi.org/10.1111/btp.12670 García, H., Corzo, G. Isaac, P., & Etter, A. (2014). Distribución y estado actual de los remanentes del bioma de bosque seco tropical en Colombia: insumos para su conservación. En C. Pizano & H. García (Eds.), El bosque seco tropical en Colombia (pp. 228-251). Instituto de Investigacion de Recursos Biológicos Alexander von Humboldt. García-Martínez, S., Basilio, B., Herazo-Vitola, F., Mercado-Gómez, J., & Morales-Puentes, M. (2016). Diversidad de briófitos en los Montes de María, Colosó (Sucre, Colombia). Colombia Forestal, 19(1), 41-52. https://doi.org/10.14483/udistrital.jour.colomb.for.2016.1.a03 García-Martínez, S., & Mercado-Gómez, J. (2017). Diversidad de briófitos en fragmentos de bosque seco tropical, Montes de María, Sucre, Colombia. Revista Mexicana de Biodiversidad, 88, 824-831. https://doi.org/10.1016/j.rmb.2017.10.035 García-Martínez, S., & Mercado-Gómez, J. (2020). Contribución a la micobiota liquénica del bosque seco tropical colombiano (Montes de María, Sucre). Ciencia en Desarrollo, 11(2), 43-52. https://doi.org/10.19053/01217488.v11.n2.2020.11000 García-Q., H., Carbonó de la Hoz, E., & Barranco-Pérez, W. (2021). Diversidad beta del bosque seco tropical en el norte del Caribe colombiano. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 45(174), 95-108. https://doi.org/10.18257/raccefyn.1267 Gentry, A. (1993). A field guide to the families and genera of woody plants of northwest South America : (Colombia, Ecuador, Peru): With supplementary notes on herbaceus taxa. Conservations International. Gentry, A. (1995). Diversity and floristic composition of neotropical dry forests. En S. H. Bullock, H. A. Mooney & E. Medina (Eds.), Seasonally Dry Tropical Forests (pp. 146-194). Cambridge University Press. Gentry, A., & Dodson, C. (1987). Contribution of non trees to species richness of a tropical rainforest. Biotropica, 19(2), 149-156 https://doi.org/10.25260/EA.18.28.3.0.694 González, R., García, H., Isaacs, P., Cuadros, H., López-Camacho, R., Rodríguez, N., Pérez, K., Mijares, F., Castaño-Naranjo, A., Jurado, R., Idárraga-Piedrahíta, Á., Rojas, A., Vergara, H., & Pizano, C. (2018). Disentangling the environmental heterogeneity, floristic distinctiveness and current threats of tropical dry forests in Colombia. Environmental Research Letters, 13(4), 045007. https://doi.org/10.1088/1748-9326/aaad74 Gradstein, S. R., Nadkarni, N. M., Kromer, T., Holz, I., & Noske, N. (2003). A protocol for rapid and representative sampling of vascular and non-vascular epiphyte diversity of tropical rain forests. Selbyana, 24 (1), 105-111. https://journals.flvc.org/selbyana/article/view/121584 Graham, E. A., & Andrade, J. L. (2004). Drought tolerance associated with vertical stratification of two co-occurring epiphytic bromeliads in a tropical dry forest. American Journal of Botany, 91(5), 699-706. https://doi.org/10.3732/ajb.91.5.699 Halffter, G., & Ros, M. (2013). A strategy for measuring biodiversity. Acta Zoologica Mexicana, 29, 400-411. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0065-17372013000200011 Herazo-Vitola, F., Mendoza-Cifuentes, H., & Mercado-Gómez, J. (2017). Estructura y composición florística del bosque seco tropical en los Montes de María (Sucre – Colombia). Ciencia en Desarrollo, 8(1), 79-90. https://doi.org/10.19053/01217488.v8.n1.2017.5912 Holmgren, P., Holmgren, N., & Barnett, L. (1990). Index Herbariorum. Part I: The Herbaria of the World. (8va ed.). International Association for Plant Taxonomy, The New York Botanical Garden. Hsieh, T., Ma, K., & Chao, A. (2016). iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution, 7(12), 1451-1456. https://doi.org/10.1111/2041-210X.12613 Iriarte-Cárdenas, S., García-Martínez, S., & Mercado-Gómez, J. D. (2022). Beta diversity analyses reveal distinct bryophyte community assemblages on different substrates in Neotropical seasonally dry forest fragments of the Colombian Caribbean. Journal of Bryology, 43(4), 355-367. https://doi.org/10.1080/03736687.2021.2009268 Jiménez-López, D. A., Roblero-Velasco, R. d. .J., Martínez-Meléndez, N., Ocampo, G., & Gallardo-Cruz, J. A. (2017). Relación entre variables del forófito y la riqueza de epífitas vasculares en los Pantanos de Centla, Tabasco, México. Acta botánica mexicana, 125-137. https://doi.org/10.21829/abm121.2017.1179 Johansson, D. (1974). Ecology of vascular epiphytes in west African rain forest. Acta Phytogeograpica Suecica, 59, 1-136. https://www.diva-portal.org/smash/get/diva2:565496/FULLTEXT01.pdf.; Jost, L. (2006). Entropy and diversity. Oikos, 113, 363-374. https://doi.org/10.1111/j.2006.0030-1299.14714.x Koch, M. A., Kleinpeter, D., Auer, E., Siegmund, A., del Rio, C., Osses, P., García, J.-L., Marzol, M. V., Zizka, G., & Kiefer, C. (2019). Living at the dry limits: ecological genetics of Tillandsia landbeckii lomas in the Chilean Atacama Desert. Plant Systematics and Evolution, 305(10), 1041-1053. https://doi.org/10.1007/s00606-019-01623-0 Kress, W. J. (1986). The systematic distribution of vascular epiphytes: an update. Selbyana, 9(1), 2-22. https://doi.org/10.1111/boj.12010 Krömer, T., Kessler, M., & Gradstein, S.R. (2007). Vertical stratification of vascular epiphytes in submontane and montane forest of the Bolivian Andes: The importance of the understory. Plant Ecology, 189(2), 261-278. https://doi.org/10.1007/s11258-006-9182-8 Lebrija-Trejos, E., Pérez-García, E. A., Meave, J. A., Bongers, F., & Poorter, L. (2010). Functional traits and environmental filtering drive community assembly in a species-rich tropical system. Ecology, 91(2), 386-398. https://doi.org/10.2307/25661065 Leopardi, C., Reina-Rodríguez, G., Carnevali, G., & Romero-González, G. (2014). Two new greenish em Encyclia: em E. parkeri and em E. silverarum (Laeliinae, Orchidaceae). Phytotaxa, 183, 159-170. https://doi.org/10.11646/phytotaxa.183.3.3 Linares-Palomino, R., Cardona, V., Hennig, E., Hensen, I., Hoffmann, D., Lendzion, J., Soto, D., Herzog, S., & Kessler, M. (2009). Non-woody life-form contribution to vascular plant species richness in a tropical American forest. Plant Ecology, 201(1), 87-99. https://doi.org/10.1007/s11258-008-9505-z López-Martínez, J. O., Hernández-Stefanoni, J. L., Dupuy, J. M., & Meave, J. A. (2013). Partitioning the variation of woody plant β-diversity in a landscape of secondary tropical dry forests across spatial scales. Journal of Vegetation Science, 24(1), 33-45. https://doi.org/10.1111/j.1654-1103.2012.01446.x Magurran, A. (1989). Diversidad ecológica y su medición. Ediciones Vedra. Marcon, E., & Hérault, B. (2015). entropart: An R Package to measure and partition diversity. Journal of Statistical Software, 67(8), 1-26. https://doi.org/10.18637/jss.v067.i08 Marcon, E., Hérault, B., Baraloto, C., & Lang, G. (2012). The decomposition of Shannon's entropy and a confidence interval for beta diversity. Oikos, 121(4), 516-522. https://doi.org/10.1111/j.1600-0706.2011.19267.x Martínez-Meléndez, N., Pérez-Farrera, M. A., & Flores-Palacios, A. (2008). Estratificación vertical y preferencia de hospedero de las epífitas vasculares de un bosque nublado de Chiapas, México. Revista de Biología Tropical, 56, 2069-2086. https://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0034-77442008000400037 Mercado-Gómez, J., Giraldo-Sánchez, C., & Escalante, T. (2021). Geographic distance and environmental variation drive community structure of woody plants in Neotropical seasonally dry forest fragments in the Colombian Caribbean. Plant Ecology & Diversity, 14(3-4), 169-182. https://doi.org/10.1080/17550874.2021.2002455 Mercado-Gómez, J., Herazo-Vitola, F. Y., & Morales-Puentes, M. E. (2019). Phytogeography and floristic affinities of woody plants in “Los Montes de María”, a tropical dry forest fragment in the Colombian Caribbean. The Botanical Review, 85, 273-291. https://doi.org/10.1007/s12229-019-09212-z Mercado-Gómez, Y., Mercado-Gómez, J., & Giraldo-Sánchez, C. (2018). Mariposas en un fragmento de bosque seco tropical en Montes de María (Colombia). Ciencia en Desarrollo, 9(2), 35-45. https://doi.org/10.19053/01217488.v9.n2.2018.7595 Motzkin, G., Wilson, P. ,Foster, D. R., & Allen, A. (1999). Vegetation patterns in heterogeneous landscapes: The importance of history and environment. Journal of Vegetation Science, 10(6), 903-920. https://doi.org/10.2307/3237315 Núñez-Avellaneda, L., Castro, M., Mestre, G., & Lozano, L. (2019). Los bosques de galería conectores de vida. Ámbito Investigativo, 4(4), 15-19. https://ciencia.lasalle.edu.co/cgi/viewcontent.cgi?article=1030&context=ai#:~:text=Los%20bosques%20de%20galer%C3%ADa%20se,matas%20de%20monte%20y%20agroecosistemas. Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., & Wagner, H. (2018). vegan: Community ecology package. R package version 2.5-2. https://cran.r-project.org/package=vegan Olascuaga, D., Sánchez-Montaño, R., & Mercado-Gómez, J. (2016). Análisis de la vegetación sucesional en un fragmento de bosque seco tropical en Toluviejo-Sucre (Colombia). Colombia forestal 19(1), 23-40. https://doi.org/10.14483/udistrital.jour.colomb.for.2016.1.a02 Pizano, C., & García, H. (2014). El bosque seco tropical en Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Qian, H., Ricklefs, R. E., & White, P. S. (2005). Beta diversity of angiosperms in temperate floras of eastern Asia and eastern North America. Ecology Letters, 8(1), 15-22. https://doi.org/10.1111/j.1461-0248.2004.00682.x Raux, P. S., Gravelle, S., & Dumais, J. (2020). Design of a unidirectional water valve in Tillandsia. Nature Communications, 11(1), 396. https://doi.org/10.1038/s41467-019-14236-5 Reina-Rodríguez, G. A., Rubiano-Mejía, J. E., Castro-Llanos, F. A., & Soriano, I. (2017). Orchid distribution and bioclimatic niches as a strategy to climate change in areas of tropical dry forest in Colombia. Lankesteriana, 17, 17-47. https://doi.org/10.15517/LANK.V17I1.27999 Reina-Rodríguez, G. O., & Otero, J. T. (2011). Guía ilustrada de las orquídeas del valle geográfico del Río Cauca y Piedemonte Andino Bajo. Sociedad Vallecauacana de Orquideología, Universidad Nacional de Colombia, Sede Palmira. Rivera-Díaz, O., & Rangel, J. O. (2012). Diversidad de espermatofitos de la región Caribe. En J. O. Rangel-Ch. (Eds.). Colombia Diversidad Biótica: XII La región Caribe de Colombia (pp. 199-317). Instituto de Ciencias Naturales. Rosa-Manzano, E. d. l., Andrade, J. L., Zotz, G., & Reyes-García, C. (2014). Respuestas fisiológicas a la sequía, de cinco especies de orquídeas epífitas, en dos selvas secas de la península de Yucatán. Botanical Sciences, 92, 607-616. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-42982014000400012&lng=es&nrm=iso&tlng=es Ruiz, A., Cavelier, J., Santos, M., & Soriano, P. (2002). Cacti in the dry Formations of Colombia. En T. Fleming & A. Valiente-Banuet (Eds.), Columnar Cacti and Their Mutualists. Evolution, Ecology and Conservation (pp. 324-341). The University of Arizona Press. Sánchez-Azofeifa, A., Kalácska, M., Espírito-Santo, M. M. d., Fernandes, G. W., & Schnitzer, S. (2009). Tropical dry forest succession and the contribution of lianas to wood area index (WAI). Forest Ecology and Management, 258(6), 941-948. https://doi.org/10.1016/j.foreco.2008.10.007 Taylor, A., Zotz, G., Weigelt, P., Cai, L., Karger, D. N., König, C., & Kreft, H. (2022). Vascular epiphytes contribute disproportionately to global centres of plant diversity. Global Ecology and Biogeography, 31(1), 62-74. https://doi.org/10.1111/geb.13411 Ter Steege, H., Sabatier, D., Castellanos, H., Andel, T. V., Duivenvoorden, J., Oliveira, A. A. d., Ek, R., Lilwah, R., Maas, P., & Mori, S. (2000). An analysis of the floristic composition and diversity of Amazonia forests including those of the Guiana Shield. Journal of Tropical Ecology, 16, 801-828. http://hdl.handle.net/11449/31255 Thiers, B. (2018). Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden’s virtual herbarium. http://sweetgum.nybg.org/science/ih/ Toledo-Aceves, T., García-Franco, J., & Flores-Palacios, A. (2017). Do cloud forest tree species differ in their suitability as a substrate for epiphytic bromeliads? Plant Ecology, 218(5), 541-546. https://doi.org/10.1007/s11258-017-0709-y Vargas, W. (2012). Los bosques secos del Valle del Cauca, Colombia: una aproximación a su flora actual. Biota Colombiana, 13(2), 102-164. http://revistas.humboldt.org.co/index.php/biota/article/view/265 Wagner, K., Bogusch, W., & Zotz, G. (2013). The role of the regeneration niche for the vertical stratification of vascular epiphytes. Journal of Tropical Ecology, 29(4), 277-290. https://doi.org/10.1017/S0266467413000291 Wang, Q., Guan, W.-B., Gi Wong, M. H., Ranjitkar, S., Sun, W.-N., Pan, Y., El-Kassaby, Y. A., & Shen, L.-X. (2017). Tree size predicts vascular epiphytic richness of traditional cultivated tea plantations in Southwestern China. Global Ecology and Conservation, 10, 147-153. https://doi.org/10.1016/j.gecco.2017.03.002 Zotz, G. (2013). The systematic distribution of vascular epiphytes – A critical update. Botanical Journal of the Linnean Society, 171(3), 453-481. https://doi.org/10.1111/boj.12010 Zotz, G., Schmidt, G., & Mikona, C. (2011). What is the proximate cause for size-dependent ecophysiological differences in vascular epiphytes? Plant Biology, 13(6), 902-908. https://doi.org/10.1111/j.1438-8677.2011.00460.xspa
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.relation.citationvolume26spa
dc.relation.citationissue1spa
dc.relation.citationeditionNúm. 1 , Año 2023 : Enero-juniospa
dc.relation.ispartofjournalColombia forestalspa
dc.identifier.eissn2256-201X
dc.identifier.urlhttps://doi.org/10.14483/2256201X.19375
dc.relation.citationstartpage5
dc.relation.citationendpage21
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/19375/18743
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/19375/19108
dc.type.contentTextspa
dspace.entity.typePublicationspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Colombia forestal - 2023
Excepto si se señala otra cosa, la licencia del ítem se describe como Colombia forestal - 2023