Mostrar el registro sencillo del ítem

dc.contributor.authorGutiérrez, Erickspa
dc.contributor.authorTrejo, Irmaspa
dc.date.accessioned2023-01-01 00:00:00
dc.date.accessioned2023-09-19T21:10:41Z
dc.date.available2023-01-01 00:00:00
dc.date.available2023-09-19T21:10:41Z
dc.date.issued2022-01-01
dc.identifier.issn0120-0739
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/44518
dc.description.abstractEl objetivo de este estudio fue aplicar diferentes tipos de datos biológicos y climáticos en el modelado de la distribución de cinco especies arbóreas en México (Pinus ayacahuite, Pinus montezumae, Pinus oocarpa, Quercus calophylla y Quercus uxoris). Para el modelado se utilizaron dos tipos de capas climáticas (tipos de clima y variables bioclimáticas) y tres tipos de datos biológicos de colecta (datos de solo presencia, datos de abundancia, y datos de presencia/ausencia). Los resultados muestran que no hay un tipo de datos biológicos y climáticos que se ajuste a todas las especies. Este trabajo evidencia que el uso de un solo tipo de datos puede derivar en subestimación o sobrestimación en las áreas potenciales de distribución.spa
dc.description.abstractThe objective of this study was to apply different types of biological and climatic data in the distribution modeling of tree species in Mexico (Pinus ayacahuite, Pinus montezumae, Pinus oocarpa, Quercus calophylla, and Quercus uxoris). Two types of climate layers (climate types and bioclimatic variables) and three types of biological collection data (presence only data, abundance data, and presence/absence data) were used for modeling. The results show that there is no one type of biological and climatic data that fits all species. This study evidences that the use of a single type of data may result in underestimation or overestimation in potential distribution areas.eng
dc.format.mimetypeapplication/pdfspa
dc.format.mimetypetext/xmlspa
dc.language.isospaspa
dc.publisherUniversidad Distrital Francisco José de Caldasspa
dc.rightsColombia forestal - 2023spa
dc.rights.urihttps://creativecommons.org/licenses/by-sa/4.0/spa
dc.sourcehttps://revistas.udistrital.edu.co/index.php/colfor/article/view/19392spa
dc.subjectAltitudspa
dc.subjectclimaspa
dc.subjectencinosspa
dc.subjectpinosspa
dc.subjectprecipitaciónspa
dc.subjecttemperaturaspa
dc.subjectAltitudeeng
dc.subjectclimateeng
dc.subjectoakseng
dc.subjectpineseng
dc.subjectprecipitationeng
dc.subjecttemperatureeng
dc.titleAplicación de diferentes tipos de datos en el modelado de la distribución de especies arbóreas en Méxicospa
dc.typeArtículo de revistaspa
dc.identifier.doi10.14483/2256201X.19392
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.localJournal articleeng
dc.title.translatedApplication of Different Types of Data in the Distribution Modeling of Tree Species in Mexicoeng
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.relation.referencesAllouche, O., Tsoar, A. & Kadmon, R. (2006). Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43(6), 1223-1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x Anderson, R., & Gonzalez, I. (2011). Species-specific tuning increases robustness to sampling bias in models of species distributions: An implementation with Maxent. Ecological Modelling, 222(15), 2796-2811. https://doi.org/10.1016/j.ecolmodel.2011.04.011 Araújo, M., & Peterson, A. (2012). Uses and misuses of bioclimatic envelope modeling. Ecology, 93(7), 1527-1539. https://doi.org/10.1890/11-1930.1 Araújo, M., Thuiller, W., Williams, P., & Reginster, I. (2005). Downscaling European species atlas distributions to a finer resolution: Implications for conservation planning. Global Ecology and Biogeography, 14(1), 17-30. https://doi.org/10.1111/j.1466-822X.2004.00128.x Ashcroft, M., French, K., & Chisholm, L. (2012). A simple post-hoc method to add spatial context to predictive species distribution models. Ecological Modelling, 228, 17-26. https://doi.org/10.1016/j.ecolmodel.2011.12.020 Austin, M. (2007). Species distribution models and ecological theory: A critical assessment and some possible new approaches. Ecological Modelling, 200(1-2), 1-19. https://doi.org/10.1016/j.ecolmodel.2006.07.005 Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S., Peterson, A., Soberón, J., & Villalobos, F. (2011). The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling, 222(11), 1810-1819. https://doi.org/10.1016/j.ecolmodel.2011.02.011 Bewley, J., & Krochko, J. (1982). Desiccation-tolerance. En O. Lange, S. Nobel, C. Osmond & H. Ziegler (Eds.), Physiological Plant Ecology II (pp. 325-378). Springer. https://doi.org/10.1007/978-3-642-68150-9_11 Bonte, D., van Dyck, H., Bullock, J., Coulon, A., Delgado, M., Gibbs, M., Lehouck, V., Matthysen, E., Mustin, K., Saastamoinen, M., Schtickzelle, N., Stevens, V., Vandewoestijne, S., Baguette, M., Barton, K., Benton, T., Chaput-Bardy, A., Clobert, J., Dytham, C., … & Travis, J. (2012). Costs of dispersal. Biological Reviews, 87(2), 290-312. https://doi.org/10.1111/j.1469-185X.2011.00201.x Boria, R., Olson, L., Goodman, S., & Anderson, R. (2014). Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecological Modelling, 275, 73-77. https://doi.org/10.1016/j.ecolmodel.2013.12.012 Buckland, S., & Elston, D. (1993). Empirical models for the spatial distribution of wildlife. Journal of Applied Ecology, 478-495. https://doi.org/10.2307/2404188 Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO) (2022). Sistema Nacional de Información sobre Biodiversidad. https://www.snib.mx/ejemplares/descarga/ Dirección General de Repositorios Universitarios. (2022). Portal de Datos Abiertos UNAM. https://datosabiertos.unam.mx/biodiversidad/ Elith, J., Phillips, S., Hastie, T., Dudík, M., Chee, Y., & Yates, C. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and distributions, 17(1), 43-57. https://doi.org/10.1111/j.1472-4642.2010.00725.x Feng, X., Park, D., Walker, C., Peterson, A., Merow, C., & Papeş, M. (2019). A checklist for maximizing reproducibility of ecological niche models. Nature Ecology & Evolution, 3(10), 1382-1395. https://doi.org/10.1038/s41559-019-0972-5 Fernández-Eguiarte, A., Zavala-Hidalgo, J., & Romero-Centeno, R. (2012). Atlas climático digital de México (versión 2.0). Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México y Servicio Meteorológico Nacional, Comisión Nacional del Agua. Fielding, A., & Bell, J. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24(1), 38-49. https://doi.org/10.1017/S0376892997000088 Forbes, A. (1995). Classification-algorithm evaluation: Five performance measures based on confusion matrices. Journal of Clinical Monitoring, 11(3), 189-206. https://doi.org/10.1007/BF01617722 García-Mendoza, A., & Meave, J. (2012). Diversidad florística de O-axaca: de musgos a angiospermas (colecciones y lista de especies). Instituto de Biología Universidad Nacional Autónoma de México. García, E. (2004). Modificaciones al sistema de clasificación climática de Köpen. UNAM. Global Biodiversity Information Facility (GBIF) (2022). Datos de ocurrencias de las especies. https://www.gbif.org/occurrence/search?occurrence_status=present&q= Hao, T., Elith, J., Lahoz‐Monfort, J., & Guillera‐Arroita, G. (2020). Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models. Ecography, 43(4), 549-558. https://doi.org/10.1111/ecog.04890 Hernndez, P., Graham, C., Master, L., & Albert, D. (2006). The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29(5), 773-785. https://doi.org/10.1111/j.0906-7590.2006.04700.x Instituto Nacional de Estadística y Geografía (2013). Conjunto de datos de Perfiles de suelos. Escala 1:250 000. Serie II (Continuo Nacional). https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825266707 Inventario Nacional Forestal y de Suelos (INFyS) (2022). Datos del inventario. https://snmf.cnf.gob.mx/datos-del-inventario/ Lee‐Yaw, J., McCune, J., Pironon, S., & Sheth, S. (2022). Species distribution models rarely predict the biology of real populations. Ecography, 2022(6), e05877. https://doi.org/10.1111/ecog.05877 Liu, C., Berry, P., Dawson, T., & Pearson, R. (2005). Selecting thresholds of occurrence in the prediction of species distributions. Ecography, 28(3), 385-393. https://doi.org/10.1111/j.0906-7590.2005.03957.x Martínez-Meyer, E., Peterson, A., Servín, J., & Kiff, L. (2006). Ecological niche modelling and prioritizing areas for species reintroductions. Oryx, 40(4), 411-418. https://doi.org/10.1017/S0030605306001360 Meineri, E., Skarpaas, O., & Vandvik, V. (2012). Modeling alpine plant distributions at the landscape scale: Do biotic interactions matter? Ecological Modelling, 231, 1-10. https://doi.org/10.1016/j.ecolmodel.2012.01.021 Merow, C., Smith, M., Edwards, T., Guisan, A., McMahon, S., Normand, S., Thuiller, W., Wüest, R., Niklaus, E., & Elith, J. (2014). What do we gain from simplicity versus complexity in species distribution models? Ecography, 37(12), 1267-1281. https://doi.org/10.1111/ecog.00845 Mitchell, P., Monk, J., & Laurenson, L. (2017). Sensitivity of fine‐scale species distribution models to locational uncertainty in occurrence data across multiple sample sizes. Methods in Ecology and Evolution, 8(1), 12-21. https://doi.org/10.1111/2041-210X.12645 Mouton, A., De Baets, B., & Goethals, P. (2010). Ecological relevance of performance criteria for species distribution models. Ecological Modelling, 221(16), 1995-2002. https://doi.org/10.1016/j.ecolmodel.2010.04.017 Nogués‐Bravo, D. (2009). Predicting the past distribution of species climatic niches. Global Ecology and Biogeography, 18(5), 521-531. https://doi.org/10.1111/j.1466-8238.2009.00476.x Padalia, H., Srivastava, V., & Kushwaha, S. (2014). Modeling potential invasion range of alien invasive species, Hyptis suaveolens (L.) Poit. in India: Comparison of MaxEnt and GARP. Ecological Informatics, 22, 36-43. https://doi.org/10.1016/j.ecoinf.2014.04.002 Pearson, R., Raxworthy, C., Nakamura, M., & Peterson, A. (2007). Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. Journal of Biogeography, 34(1), 102-117. https://doi.org/10.1111/j.1365-2699.2006.01594.x Peterson, A. (2001). Predicting species' geographic distributions based on ecological niche modeling. The Condor, 103(3), 599-605. https://doi.org/10.1093/condor/103.3.599 Peterson, A. (2003). Predicting the geography of species’ invasions via ecological niche modeling. The Quarterly Review of Biology, 78(4), 419-433. https://doi.org/10.1086/378926 Peterson, A. Ortega-Huerta, M., Bartley, J., Sánchez-Cordero, V., Soberón, J., Buddemeier, R., & Stockwell, D. (2002). Future projections for Mexican faunas under global climate change scenarios. Nature, 416(6881), 626-629. https://doi.org/10.1038/416626a Peterson, A., Sánchez-Cordero, V., Beard, C., & Ramsey, J. (2002). Ecologic niche modeling and potential reservoirs for Chagas disease, Mexico. Emerging Infectious Diseases, 8(7), 662. https://doi.org/10.3201/eid0807.010454 Phillips, S., Anderson, R., & Schapire, R. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3-4), 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 Saupe, E., Barve, V., Myers, C., Soberón, J., Barve, N., Hensz, C., Peterson, A., Owen, H., & Lira-Noriega, A. (2012). Variation in niche and distribution model performance: The need for a priori assessment of key causal factors. Ecological Modelling, 237, 11-22. https://doi.org/10.1016/j.ecolmodel.2012.04.001 Shabani, F., Kumar, L., & Ahmadi, M. (2016). A comparison of absolute performance of different correlative and mechanistic species distribution models in an independent area. Ecology and Evolution, 6(16), 5973-5986. https://doi.org/10.1002/ece3.2332 Simmonds, E., Jarvis, S., Henrys, P., Isaac, N., & O'Hara, R. (2020). Is more data always better? A simulation study of benefits and limitations of integrated distribution models. Ecography, 43(10), 1413-1422. https://doi.org/10.1111/ecog.05146 Smith, R., Smith, T., & Román, E. (2007). Ecología. Pearson Educación. Smith, A., & Santos, M. (2020). Testing the ability of species distribution models to infer variable importance. Ecography, 43(12), 1801-1813. https://doi.org/10.1111/ecog.05317 Soberón, J., & Peterson, A. (2005). Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics, 2, 1-10. https://doi.org/10.17161/bi.v2i0.4 Soberón, J. (2007). Grinnellian and Eltonian niches and geographic distributions of species. Ecology letters, 10(12), 1115-1123. https://doi.org/10.1111/j.1461-0248.2007.01107.x Soberón, J. (2010). Niche and area of distribution modeling: a population ecology perspective. Ecography, 33(1), 159-167. https://doi.org/10.1111/j.1600-0587.2009.06074.x Stankowski, P., & Parker, W. (2011). Future distribution modelling: A stitch in time is not enough. Ecological Modelling, 222(3), 567-572. https://doi.org/10.1016/j.ecolmodel.2010.10.018 Stanton-Geddes, J., Tiffin, P., & Shaw, R. (2012). Role of climate and competitors in limiting fitness across range edges of an annual plant. Ecology, 93(7), 1604-1613. https://doi.org/10.1890/11-1701.1 Trejo, I. (2004). Clima. En A. García-Mendoza, M. Ordóñez & M. Briones-Salas (eds.). Biodiversidad de Oaxaca (Pp. 67-85). UNAM, Fondo Oaxaqueño para la Conservación de la Naturaleza, World Wildlife Fund. Wisz, M., Hijmans, R., Li, J., Peterson, A., Graham, C., Guisan, A., & NCEAS Predicting Species Distributions Working Group (2008). Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14(5), 763-773. https://doi.org/10.1111/j.1472-4642.2008.00482.x WorldClim. (2022). Variables bioclimáticas. https://www.worldclim.org/data/bioclim.html Zaniewski, A., Lehmann, A., & Overton, J. (2002). Predicting species spatial distributions using presence-only data: A case study of native New Zealand ferns. Ecological Modelling, 157(2-3), 261-280. https://doi.org/10.1016/S0304-3800(02)00199-0 Zurell, D., Franklin, J., König, C., Bouchet, P., Dormann, C., Elith, J., Fandos, G., Feng, X., Guillera-Arroita, G., Guisan, A., Lahoz-Monfort, J., Leitão, P., Park, D., Peterson, A., Rapacciuolo, G., Schmatz, D., Schröder, B., Serra-Diaz, J., Thuiller, W., … & Merow, C. (2020). A standard protocol for reporting species distribution models. Ecography, 43(9), 1261-1277. https://doi.org/10.1111/ecog.04960spa
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.relation.citationvolume26spa
dc.relation.citationissue1spa
dc.relation.citationeditionNúm. 1 , Año 2023 : Enero-juniospa
dc.relation.ispartofjournalColombia forestalspa
dc.identifier.eissn2256-201X
dc.identifier.urlhttps://doi.org/10.14483/2256201X.19392
dc.relation.citationstartpage48
dc.relation.citationendpage63
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/19392/18742
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/19392/19113
dc.type.contentTextspa
dspace.entity.typePublicationspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Colombia forestal - 2023
Excepto si se señala otra cosa, la licencia del ítem se describe como Colombia forestal - 2023