Mostrar el registro sencillo del ítem

dc.contributor.authorMachuca Duarte, Francy Lilianaspa
dc.contributor.authorAcevedo Bermúdez, Álvaro Sebastiánspa
dc.contributor.authorSuescún Carvajal, Diegospa
dc.contributor.authorLeón Peláez, Juan Diegospa
dc.contributor.authorBolívar-Santamaría, Sergiospa
dc.date.accessioned2023-07-01 10:12:26
dc.date.accessioned2023-09-19T21:10:41Z
dc.date.available2023-07-01 10:12:26
dc.date.available2023-09-19T21:10:41Z
dc.date.issued2023-07-01
dc.identifier.issn0120-0739
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/44519
dc.description.abstractEste artículo evaluó, para un bosque altoandino, la relación entre la producción y descomposición de hojarasca y varias variables, incluyendo la lluvia, el suelo y las estructuras y características florísticas. Se instalaron trampas de hojarasca, trampas de descomposición y pluviómetros, y se registraron varias variables. La producción fina total de hojarasca fue de 4780 kg.ha-1.año-1, con las hojas como la fracción más representativa (60.4 %), mientras que la descomposición estuvo entre 25 y 30 %. Se encontraron correlaciones significativas entre la producción fina y la precipitación incidente (0.60), entre altura (-0.98) y biomasa aérea (0.97) y entre la descomposición y la humedad (0.75). Los resultados sugieren que los cambios en la estructura del bosque o en las condiciones meteorológicas podrían afectar la regulación de las funciones ecosistémicas y biogeoquímicas, destacando la importancia de conservar los bosques altoandinos amenazados por la deforestación y el cambio climático.spa
dc.description.abstractThis article evaluated the relationship between litter production and decomposition in a High-Andean forest and several variables, including rainfall, soil, and structural and floristic characteristics. Litter traps, decomposition traps, and rain gauges were installed, and various variables were recorded. The total fine litter production was 4780 kg.ha-1.year-1, with leaves as the most representative fraction (60.4%), while decomposition was between 25 and 30%. Significant correlations were found between fine litter production and incident precipitation (0.60), between height (-0.98) and aboveground biomass (0.97), and between decomposition and moisture (0.75). The results suggest that changes in the forest structure or weather conditions could affect the regulation of ecosystem and biogeochemical functions, highlighting the importance of conserving High-Andean forests, which are threatened by deforestation and climate change.eng
dc.format.mimetypeapplication/pdfspa
dc.format.mimetypetext/xmlspa
dc.language.isospaspa
dc.publisherUniversidad Distrital Francisco José de Caldasspa
dc.rightsColombia forestal - 2023spa
dc.rights.urihttps://creativecommons.org/licenses/by-sa/4.0/spa
dc.sourcehttps://revistas.udistrital.edu.co/index.php/colfor/article/view/19524spa
dc.subjectbiomasa aéreaspa
dc.subjecttrampas de descomposiciónspa
dc.subjectcambio ambiental globalspa
dc.subjectproductividad del bosquespa
dc.subjectservicios ecosistémicosspa
dc.subjecttrampas de hojarascaspa
dc.subjectaboveground biomasseng
dc.subjectdecomposition trapseng
dc.subjectglobal climate changeeng
dc.subjectforest productivityeng
dc.subjectecosystem serviceseng
dc.subjectlitter trapseng
dc.titleProducción y descomposición de hojarasca en un robledal: análisis de determinantes ambientales y la vegetaciónspa
dc.typeArtículo de revistaspa
dc.identifier.doi10.14483/2256201X.19524
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.localJournal articleeng
dc.title.translatedProduction and Decomposition of Litter in Oak Forests: Analysis of Environmental Determining Factors and Vegetationeng
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.relation.referencesÁlvarez, E., Duque, A., Saldarriaga, J., Cabrera, K., de Las Salas, G., del Valle, I., Lema, A., Moreno, F., Orrego, S., & Rodríguez, L. (2012). Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. Forest Ecology and Management, 267, 297-308. https://doi.org/10.1016/j.foreco.2011.12.013 Aragão, L. E., Malhi, Y., Metcalfe, D. B., Silva-Espejo, J., Jiménez, E., Navarrete, D., Almeida, S., Costa, A. C. L., Salinas, O. L., Phillips, L. O., Álvarez, E., Baker, T. R., Gonçalvez, P. H., Huamán-Ovalle, J., Marmani-Solórzano, M., Meir, P., Monteagudo, A., Patiño, S. … Vásquez, R. (2009). Above-and below-ground net primary productivity across ten Amazonian forests on contrasting soils. Biogeosciences, 6(12), 2759-2778. https://doi.org/10.5194/bg-6-2759-2009 Avella, A., & Cárdenas, L. M. (2010). Conservación y uso sostenible de los bosques de roble en el corredor de conservación Guantiva-La Rusia-Iguaque, departamentos de Santander y Boyacá, Colombia. Colombia Forestal, 13(1), 5-26. https://doi.org/10.14483/udistrital.jour.colomb.for.2010.1.a01 Ávila, F. A., Ángel, S. P., & López, R. C. (2010). Diversidad y estructura de un robledal en la reserva biológica Cachalú, Encino (Santander-Colombia). Colombia Forestal, 13(1), 87-116 https://doi.org/10.14483/udistrital.jour.colomb.for.2010.1.a04 Bruijnzeel, L. A., Mulligan, M., & Scatena, F. N. (2011). Hydrometeorology of tropical montane cloud forests: emerging patterns. Hydrological Processes, 25(3), 465-498. https://doi.org/10.1002/hyp.7974spa
dc.relation.referencesCastellanos-Barliza, J., Carmona-Escobar, V., Linero-Cueto, J., Ropain-Hernández, E., & León-Peláez, J. D. (2022). Fine litter dynamics in tropical dry forests located in two contrasting landscapes of the Colombian Caribbean. Forests, 13(5), 660. https://doi.org/10.3390/f13050660 Cizungu, L., Staelens, J., Huygens, D., Walangululu, J., Muhindo, D., Van Cleemput, O., & Boeckx, P. (2014). Litterfall and leaf litter decomposition in a central African tropical mountain forest and Eucalyptus plantation. Forest Ecology and Management, 326, 109-116. https://doi.org/10.1016/j.foreco.2014.04.015 Dalling, J. W., Guariguata, M. R., & Kattan, G. H. (2002). Ecología y conservación de bosques neotropicales. Editora LUR. Domínguez, A. K., & Silva, C. N. (2020). Efecto sinergético de las propiedades fisicoquímicas del suelo sobre la diversidad y estructura de plántulas en un bosque altoandino [Tesis de pregrado, Universidad Industrial de Santander]. Du, J., Niu, J., Gao, Z., Chen, X., Zhang, L., Li, X., van Doorn, N. S., Luo, Z., & Zhu, Z. (2019). Effects of rainfall intensity and slope on interception and precipitation partitioning by forest litter layer. Catena, 172, 711-718. https://doi.org/10.1016/j.catena.2018.09.036 Fu, C., Yang, W., Tan, B., Xu, Z., Zhang, Y., Yang, J., Ni, X., & Wu, F. (2017). Seasonal dynamics of litterfall in a sub-alpine spruce-fir forest on the eastern Tibetan Plateau: Allometric scaling relationships based on one year of observations. Forests, 8(9), 314. https://doi.org/10.3390/f8090314 Ge, X., Zeng, L., Xiao, W., Huang, Z., Geng, X., & Tan, B. (2013). Effect of litter substrate quality and soil nutrients on forest litter decomposition: A review. Acta Ecologica Sinica, 33(2), 102-108. https://doi.org/10.1016/j.chnaes.2013.01.006 Gleiser, G., Leme da Cunha, N., Sáez, A., & Aizen, M. A. (2021). Ecological correlates of crop yield growth and interannual yield variation at a global scale. Web Ecology, 21(1), 15-43. https://doi.org/10.5194/we-21-15-2021 Gómez, M. (2018). Fenología reproductiva de especies forestales nativas presentes en la jurisdicción de CORANTIOQUIA, un paso hacia su conservación. Corporación Autónoma Regional del Centro de Antioquia, CORANTIOQUIA. González, A., & Parrado, Á. (2010). Diferencias en la producción de frutos del roble Quercus humboldtii Bonpl. en dos bosques andinos de la cordillera oriental colombiana. Colombia Forestal, 13(1), 141-162. https://doi.org/10.14483/udistrital.jour.colomb.for.2010.1.a06 Homeier, J, Hertel D., Camenzind, T, Cumbicus, N. L., Maraun, M., Martinson, G. O., Poma, L. N., Rillig, M. C., Sandmann, D., Scheu, S., Veldkamp, E., Wilcke, W., Wullaert, H., & Leuschner, C. (2012). Tropical Andean forests are highly susceptible to nutrient inputs –Rapid effects of experimental N and P addition to an Ecuadorian montane forest. PLoS One 7: e47128. https://doi.org/10.1371/journal.pone.0047128 Jaimes, E. M., & Rosales, M. S. (2019). Estructura y diversidad de fustales y latizales en dos bosques naturales tropicales bajo condiciones contrastantes de temperatura y humedad: implicaciones para la conservación [Tesis de pregrado, Universidad Industrial de Santander]. https://noesis.uis.edu.co/items/9c308d80-46b6-4d68-a444-de64432d505f León, J., González, M., & Gallardo, J. (2010). Distribución del agua lluvia en tres bosques altoandinos de la Cordillera Central de Antioquia, Colombia. Revista Facultad Nacional de Agronomía Medellín, 63(1), 5319-5336. León, J., González., M., & Gallardo., J. (2011). Ciclos biogeoquímicos en bosques naturales y plantaciones de coníferas en ecosistemas de alta montaña de Colombia. Revista de Biología Tropical, 59(4), 1883-1894. https://doi.org/10.15517/rbt.v59i4.33193 León-Peláez, J. D., Caicedo-Ruiz, W., & Castellanos-Barliza, J. (2021). Reactivation of nutrient cycling in an urban tropical dry forest after abandonment of agricultural activities. Revista Chapingo Serie Ciencias Forestales, 27(3), 355-365. https://doi.org/10.5154/r.rchscfa.2020.11.068 López, D. C., & Salinas, N. (2007). Libro rojo de plantas de Colombia. Volumen 4. Especies maderables amenazadas: Primera parte. Instituto Amazónico de Investigaciones Científicas SINCHI. López, R., Navarro, L. J., & Caleño, B. (2016). Productos forestales no maderables de CORPOCHIVOR. Una mirada a los regalos del bosque. CORPOCHIVOR. Madritch, M., & Cardinale, J. (2007). Impacts of tree species diversity on litter decomposition in northern temperate forests of Wisconsin, USA: A multi-site experiment along a latitudinal gradient. Plant and Soil, 292(1), 147-159. https://doi.org/10.1007/s11104-007-9209-5 Marian, F., Sandmann, D., Krashevska, V., Maraun, M., & Scheu, S. (2018). Altitude and decomposition stage rather than litter origin structure soil microarthropod communities in tropical montane rainforests. Soil Biology and Biochemistry, 125, 263-274. https://doi.org/10.1016/j.soilbio.2018.07.017 Moreno, M. E., Domínguez, G. T. G., Alvarado, S., Colín, J. G., Corral, R. S., & González, R. H. (2018). Aporte y descomposición de hojarasca en bosques templados de la región de El Salto, Durango. Revista Mexicana de Ciencias Forestales, 9(47), 70-93. https://doi.org/10.29298/rmcf.v9i47.180 Morffi-Mestre, H., Ángeles-Pérez, G., Powers, J. S., Andrade, J. L., Huechacona Ruiz, A. H., May-Pat, F., Chi-May, F., & Dupuy, J. M. (2020). Multiple factors influence seasonal and interannual litterfall production in a tropical dry forest in Mexico. Forests, 11(12), 1241. https://doi.org/10.3390/f11121241 Muñoz, J. (2017). Regeneración Natural: Una revisión de los aspectos ecológicos en el bosque tropical de montaña del sur del Ecuador. Bosques Latitud Cero, 7(2),130-143. https://revistas.unl.edu.ec/index.php/bosques/article/view/326 Murcia, M. (2019). Dinámica de la caída de hojarasca en un gradiente sucesional del bosque altoandino colombiano. BISTUA Revista de la Facultad de Ciencias Básicas, 2019, 179-186. https://doi.org/10.24054/01204211.v.n.2019.227 Nonghuloo, I. M., Kharbhih, S., Suchiang, B. R., Adhikari, D., Upadhaya, K., & Barik, S. K. (2020). Production, decomposition and nutrient contents of litter in subtropical broadleaved forest surpass those in coniferous forest, Meghalaya. Tropical Ecology, 61(1), 5-12. https://doi.org/10.1007/s42965-020-00065-x Oliveira, R. A., Marques, R., & Marques, M. C. (2019). Plant diversity and local environmental conditions indirectly affect litter decomposition in a tropical forest. Applied Soil Ecology, 134, 45-53. https://doi.org/10.1016/j.apsoil.2018.09.016 Peláez, I. M. (2016). Modelos de regresión: lineal simple y regresión logística. Revista Seden, 14, 195-214. https://www.revistaseden.org/files/14-cap%2014.pdf Preusser, S., Liebmann, P., Stucke, A., Wirsching, J., Müller, K., Mikutta, R., Guggenberger, G., Don, A., Kalbitz, K., Bachmann, J., Marhan, S., Poll, C., & Kandeler, E. (2021). Microbial utilization of aboveground litter-derived organic carbon within a sandy Dystric Cambisol profile. Frontiers in Soil Science, 1, 3. https://doi.org/10.3389/fsoil.2021.666950 R Development Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org Röderstein, M., Hertel, D., & Leuschner, C. (2005). Above-and below-ground litter production in three tropical montane forests in southern Ecuador. Journal of Tropical Ecology, 21(5), 483-492. https://doi.org/10.1017/s026646740500249x Salas, R. J., & Infante, A. C. (2006). Producción primaria neta aérea en algunos ecosistemas y estimaciones de biomasa en plantaciones forestales. Revista Forestal Latinoamericana, 40, 47-70. Sánchez, A. J. (2001). Descomposición y ciclo de nutrientes en ecosistemas terrestres de México. Acta Zoológica Mexicana, Es1, 11-27. Sayer, E. J., Heard, M. S., Grant, H. K., Marthews, T. R., & Tanner, E. V. (2011). Soil carbon release enhanced by increased tropical forest litterfall. Nature Climate Change, 1(6), 304-307. https://doi.org/10.1038/nclimate1190 Segura, M. M., Andrade, H. J., & Sierra, R. E. (2020). Diversidad florística y captura de Carbono en robledales y pasturas con árboles en el municipio de Santa Isabel, Tolima, Colombia. Revista de Biología Tropical, 68(2), 383-391. https://doi.org/10.15517/rbt.v68i2.37579 Smith, T. M., & Smith, R. L. (2007). Ecology. Pearson Educación. Suescún, D., León, J. D., Villegas, J. C., García‐Leoz, V., Correa‐Londoño, G. A., & Flórez, C. P. (2019). ENSO and rainfall seasonality affect nutrient exchange in tropical mountain forests. Ecohydrology, 12(2), e2056. https://doi.org/10.1002/eco.2056 Thomas, J., Brunette, M., & Leblois, A. (2021). The determinants of adapting forest management practices to climate change: Lessons from a survey of French private forest owners. Forest Policy and Economics, 135, 102662. https://doi.org/10.1016/j.forpol.2021.102662 van der Kooi, C., & Ollerton, J. (2020). The origins of flowering plants and pollinators. Science, 368(6497), 1306-1308. https://doi.org/10.1126/science.aay3662 Wang, Z., Yin, X., & Li, X. (2015). Soil mesofauna effects on litter decomposition in the coniferous forest of the Changbai Mountains, China. Applied Soil Ecology, 92, 64-71. https://doi.org/10.1016/j.apsoil.2015.03.010 Zapata, C. M., Ramírez, J. A., León, J. D., & González, M. I. (2007). Producción de hojarasca fina en bosques altoandinos de Antioquia, Colombia. Revista Facultad Nacional de Agronomía Medellín, 60(1), 3771-3784. Zhang, H., Yuan, W., Dong, W., & Liu, S. (2014). Seasonal patterns of litterfall in forest ecosystem worldwide. Ecological Complex, 20, 240-247. https://doi.org/10.1016/j.ecocom.2014.01.003spa
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.relation.citationvolume26spa
dc.relation.citationissue2spa
dc.relation.citationeditionNúm. 2 , Año 2023 : Julio-diciembrespa
dc.relation.ispartofjournalColombia forestalspa
dc.identifier.eissn2256-201X
dc.identifier.urlhttps://doi.org/10.14483/2256201X.19524
dc.relation.citationstartpage44
dc.relation.citationendpage59
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/19524/19234
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/19524/19390
dc.type.contentTextspa
dspace.entity.typePublicationspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Colombia forestal - 2023
Excepto si se señala otra cosa, la licencia del ítem se describe como Colombia forestal - 2023