Mostrar el registro sencillo del ítem

dc.contributor.authorda Silva Ledo, Anaspa
dc.contributor.authorde Araujo Machado, Carolinespa
dc.contributor.authorAraújo de Oliveira, Annie Carolinaspa
dc.contributor.authorArrigoni-Blank, Maria de Fátimaspa
dc.contributor.authorMauro de Castro, Evaristospa
dc.contributor.authorCruz da Silva, Ana Veruskaspa
dc.date.accessioned2023-07-01 10:12:26
dc.date.accessioned2023-09-19T21:10:42Z
dc.date.available2023-07-01 10:12:26
dc.date.available2023-09-19T21:10:42Z
dc.date.issued2023-07-01
dc.identifier.issn0120-0739
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/44520
dc.description.abstractHancornia speciosa Gomes pertenece a la familia Apocynaceae, distribuida en diferentes regiones de Brasil. El objetivo de este trabajo fue evaluar la callogénesis y la histodiferenciación en cinco accesiones de mangaba bajo diferentes condiciones de cultivo in vitro. Se evaluaron cinco accesiones del Banco de Germoplasma Activo de Mangaba (Embrapa, Brasil). Las plántulas germinadas in vitro se utilizaron para la escisión de explantes (segmentos nodales e internodales y secciones foliares). Estos segmentos fueron inoculados en un medio de cultivo que contenía diferentes concentraciones de 6-benzilaminopurina (BA) y ácido 2,4-diclorofenoxiacético (2,4-D). Hubo un efecto significativo de las accesiones, los tratamientos y el tiempo del cultivo en la masa de los callos. No hubo inducción de callos en ausencia de reguladores. A los 60 días de cultivo in vitro, los otros tratamientos presentaron un crecimiento celular linear positivo. La mayor masa de callo se observó en la accesión BI, en presencia de 22,62 μM 2,4-D y 11,10 μM BA.spa
dc.description.abstractHancornia speciosa Gomes belongs to the family Apocynaceae and is distributed across different regions of Brazil. The objective of this study was to evaluate callus induction and histodifferentiation in five mangaba accessions under different in vitro culture conditions. Five acessions from the Active Germplasm Bank of Mangaba (Embrapa, Brazil) were evaluated. In vitro-germinated plant seedlings were used for the excision of different explants (internode and node segments, and foliar section). These segments were inoculated in a culture medium containing different concentrations of 6-Benzylaminopurine (BA) and 2,4-Dichlorophenoxyacetic acid (2,4-D). There was a significant effect of accessions, treatments, and time on the callus mass (g). There was no callus induction in the absence of regulators. After 60 days of in vitro culture, all treatments exhibited a linear positive cellular growth. The highest callus mass was observed in the BI accession, in the presence of 22.62 µM 2,4-D and 11.10 µM BA.eng
dc.format.mimetypeapplication/pdfeng
dc.format.mimetypetext/xmleng
dc.language.isoengeng
dc.publisherUniversidad Distrital Francisco José de Caldasspa
dc.rightsColombia forestal - 2023eng
dc.rights.urihttps://creativecommons.org/licenses/by-sa/4.0/eng
dc.sourcehttps://revistas.udistrital.edu.co/index.php/colfor/article/view/19696eng
dc.subjectmangabaeng
dc.subjectin vitro tissue cultureeng
dc.subjectcellular dedifferentiationeng
dc.subjectmangabaspa
dc.subjectcultivo de tejidos in vitrospa
dc.titleCallogénesis y caracterización morfohistológica de <i>Hancornia speciosa</i> Gomesspa
dc.typeArtículo de revistaspa
dc.identifier.doi10.14483/2256201X.19696
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501eng
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1eng
dc.type.localJournal articleeng
dc.title.translatedCallogenesis and Morphohistological Characterization of Hancornia speciosa Gomeseng
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2eng
dc.relation.referencesAkram, M., & Aftab, F. (2016). Establishment of embryogenic cultures and efficient plant regeneration system from explants of forced softwood shoots of teak (Tectona grandis L.). Horticultural Plant Journal, 2(5), 293-300. https://doi.org/10.1016/j.hpj.2017.01.008 Alves, E., Leite, B., Marucci, R. C., Pascholati, S. F., Lopes, J. R. S., & Andersen, P. C. (2008). Retention sites for Xylella fastidiosa in four sharpshooter vectors (Hemiptera cicadellidae) analyzed by scanning electron microscopy. Current Microbiology, 56(5), 531-8. https://doi.org/10.1007/s00284-008-9119-7 Amente, G., & Chimdessa, E. (2021). Control of browning in plant tissue culture: A review. Journal of Scientific Agriculture, 5, 67-71. https://doi.org/10.25081/jsa.2021.v5.7266 Bhagya, N., & Chandrashekar, K. R. (2013). Effect of growth regulators on callus induction from Cyclea peltata (Lam.) Hook. f. Thoms. Asian Journal Pharmaceutica and Clinical Research, 6(4), 85-88. https://innovareacademics.in/journals/index.php/ajpcr/article/view/497 Bathia, S. (2015). Plant tissue culture. In S. Bathia, T. Bera, & K. Sharma (Eds.), Modern Applications of Plant Biotechnology in Pharmaceutical Sciences (pp. 31-107). Academic Press. https://doi.org/10.1016/C2014-0-02123-5 Cardoso, J. C., Oliveira, M. E. B. S., & Cardoso. F. de C. I. (2019). Advances and challenges on the in vitro production of secondary metabolites from medicinal plants. Horticultura Brasileira, 37(2), 124-132. https://doi.org/10.1590/S0102-053620190201 Cordeiro, S. Z., Simas, N., Henriques, A. B., & Sato, A. (2014). Micropropagation and callogenesis in Mandevilla guanabarica (Apocynaceae), an endemic plant from Brazil. Crop Breeding and Applied Biotechnology, 14, 108-115. https://doi.org/10.1590/1984-70332014v14n2a19 Cornelio, M. N. (2018). Chemical analysis and establishment of in vitro culture of Aspidosperma cylindrocarpon Muell. Arg. and Aspidosperma polyneuron Muell. Arg. USP [Doctoral thesis, Universidade de São Paulo]. https://doi.org/10.11606/T.46.2018.tde-31072018-151847 Chiavegatto, R. B., Castro, A. H. F., Marçal, M. G., & Pádua, M. S. (2015). Cell Viability, mitotic index and callus morphology of Byrsonima verbascifolia (Malpighiaceae). Tropical Plant Biology, 8, 87-97. https://doi.org/10.1007/s12042-015-9150-3 Das, P., Tanti, B., & S. K. Borthakur, S. K. (2018). In vitro callus induction and indirect organogenesis of Brucea mollis Wall. ex Kurz – A potential medicinal plant of Northeast India. South African Journal of Botany, 119, 203-211 https://doi.org/10.1016/j.sajb.2018.09.012 Ferreira, D. F. (2019). A computer analysis system to fixed effects split plot type designs: Sisvar. Brazilian Journal of Biometrics, 37(4), 529–535. https://doi.org/10.28951/rbb.v37i4.450 Grąbkowska, R., Matkowski, A., Grzegorczyk-Karolak, I., & Wysokińska, H. (2016). Callus cultures of Harpagophytum procumbens (Burch.) DC. Ex Meisn.; production of secondary metabolites and antioxidant activity. South African Journal of Botany, 103, 41-48. https://doi.org/10.1016/j.sajb.2015.08.012 Karnovsky, M. J. (1965). A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. Journal of Cell, Biology, 27(2), 137-138. http://www.jstor.org/stable/1604673 Kumar, M. S., & Nandi, S. C. (2015). High frequency plant regeneration with histological analysis of organogenic callus from internode explants of Asteracantha longifolia Nee. Journal of Genetic Engineering and Biotechnology, 76(1), 31-37. https://doi.org/10.1016/j.jgeb.2014.12.002 Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473- 497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x Mustafa, N. R., Winter, W., Iren, F., & Verpoorte, R. (2011). Initiation, growth and cryopreservation of plant cell suspension cultures. Nature Protocols, 6(6), 715-742. https://doi.org/10.1038/nprot.2010.144 Oliveira, K. S., Freire, F. A. M., & Aloufa, M. A. I. (2016). Efeito de 6-benzilaminopurina e ácido naftalenoacético sobre propagação in vitro de Hancornia speciosa Gomes. Revista Floresta, 46, 335-342. https://doi.org/10.5380/RF.V46I3.43993 Osman, N. I., Sidik, N. J., & Awal, A. (2016). Effects of variations in culture media and hormonal treatments upon callus induction potential in endosperm explant of Barringtonia racemosa L. Asian Pacific Journal Tropical Biomedicine, 6, 143-147. https://doi.org/10.1016/j.apjtb.2015.10.007 Pan, Y., Li, L., Xiao, S., Chen, Z., Sarsaiya, S., & Zhang, S. (2020). Callus growth kinetics and accumulation of secondary metabolites of Bletilla striata Rchb.f. using a callus suspension culture. PLoS ONE, 15(2), e0220084. https://doi.org/10.1371/journal.pone.0220084 Perrot-Rechenmann, C. (2010). Cellular responses to auxin: Division versus expansion. Cold Spring Harbor Perspectives in Biology, 2(5), 1-15. https://doi.org/10.1101/cshperspect.a001446 Premjet, D., Obeng, A. K., & Premjet, S. (2020). Establishment of callus culture of Melientha suavis Pierre. Chilean Journal of Agricultural Research, 8(3), 459-465. https://doi.org/10.4067/S0718-58392020000300459 Prudente, D. O., Paiva, R., Nery, F. C., Máximo, F. C., Flausino, W. P., & Coutinho L. C. (2016). Organogênese indireta in vitro de Hancornia speciosa Gomes. Bioscience Journal, 32(3), 721-729. https://pdfs.semanticscholar.org/dfc1/129120d469d290e00e42163936e0e3acf977.pdf Puad N. I. M. & Abdullah, T. A. (2018). Monitoring the growth of plant cells in suspension culture. In A. Amid, S. Sulaiman, D. N. Jimat, N. Fadhillah M. Azmin (Eds.), Multifaceted Protocol in Biotechnology (pp. 203-214). Springer. https://doi.org/10.1007/978-981-13-2257-0_17 Rufino, M. S. M., Alves, R. E., de Brito, E. S., Pérez-Jiménez, J., Saura-Calixto, F., & Mancini-Filho, J. (2010). Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chemistry, 121, 996-1002. https://doi.org/10.1016/j.foodchem.2010.01.037 Rufino, M. S. M., Fernandes, F. A. N., Alves, R. E. & de Brito, E. S. (2009). Free radical-scavenging behaviour of some north-east Brazilian fruits in a DPPH system. Food Chemistry, 114, 693-695. https://doi.org/10.1016/j.foodchem.2008.09.098 Santos, P. S., Freitas, L. dos S., Santana, J. G. S., Muniz, E. N. & Rabbani, A. R. C. (2017). Genetic diversity and the quality of mangabeira tree fruits (Hancornia speciosa Gomes – Apocynaceae), a native species from Brazil. Scientia Horticulturae, 226, 372-378. https://doi.org/10.1016/j.scienta.2017.09.008 Silva, A. V. C., Soares, N. R. A., Ledo, A. da S. & Costa, T. S. (2017). Uses and technological prospects for the mangaba, a native fruit of Brazil. African Journal of Biotechnology, 16(7), 302-311. http://dx.doi.org/10.5897/AJB2016.15786 Varnika, S., Varnika V., Sharma, R., Singh, A., Shalini, S. & Sharma, N. (2020). Micropropagation and screening of phytocompounds present among in vitro raised and wild plants of Rauvolfia serpentine. Walailak Journal Sciences & Technology, 17(11), 1177-1193. http://dx.doi.org/10.48048/wjst.2020.6492 Wawrosch, C. & Zotchev, S. B. (2021). Production of bioactive plant secondary metabolites through in vitro technologies-status and outlook. Applied Microbiology and Biotechnology, 105(18), 6649-6668. http://dx.doi.org/10.1007/s00253-021-11539-weng
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.eng
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85eng
dc.type.driverinfo:eu-repo/semantics/articleeng
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTeng
dc.type.versioninfo:eu-repo/semantics/publishedVersioneng
dc.relation.citationvolume26spa
dc.relation.citationissue2spa
dc.relation.citationeditionNúm. 2 , Año 2023 : Julio-diciembrespa
dc.relation.ispartofjournalColombia forestalspa
dc.identifier.eissn2256-201X
dc.identifier.urlhttps://doi.org/10.14483/2256201X.19696
dc.relation.citationstartpage5
dc.relation.citationendpage14
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/19696/19232
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/19696/19388
dc.type.contentTexteng
dspace.entity.typePublicationeng


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Colombia forestal - 2023
Excepto si se señala otra cosa, la licencia del ítem se describe como Colombia forestal - 2023