Mostrar el registro sencillo del ítem

dc.contributor.authorSoto Medina, Edierspa
dc.contributor.authorJiménez, Ángelaspa
dc.contributor.authorZuluaga, Alejandrospa
dc.date.accessioned2023-07-01 10:12:26
dc.date.accessioned2023-09-19T21:10:42Z
dc.date.available2023-07-01 10:12:26
dc.date.available2023-09-19T21:10:42Z
dc.date.issued2023-07-01
dc.identifier.issn0120-0739
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/44521
dc.description.abstractEste estudio analizó las relaciones entre la riqueza de especies-área y la diversidad filogenética-área en la flora relictual del bosque seco tropical en el valle del río Cauca en Colombia, utilizando un listado de especies de 38 relictos de bosque seco. Se encontró que la riqueza de plantas se ajusta al modelo relación especies-área (SAR), aunque con pendientes más pronunciadas que las islas de hábitat, y que la dispersión de las especies afectó el modelo SAR. Además, las comunidades de plantas presentaron un patrón de anidamiento. El clima no influyó en la riqueza de plantas, pero sí en la composición de especies. La diversidad filogenética no estuvo relacionada con el área, pero se incrementó el agrupamiento filogenético con la misma. En conclusión, la limitación en la dispersión es el factor que estructura la riqueza de plantas en los relictos del bosque seco tropical.spa
dc.description.abstractThis study analyzed the relationships between species-area richness and phylogenetic diversity-area in the relict flora of the tropical dry forest in the Cauca River valley in Colombia, using a species list from 38 relict sites. The results showed that plant richness followed the species-area relationship (SAR) model, albeit with steeper slopes than expected for habitat islands, and that species dispersion affected the SAR model. Additionally, plant communities showed a nested pattern. Climate did not influence plant richness, but it did affect species composition. Phylogenetic diversity was not related to area, but phylogenetic clustering increased with it. As a conclusion, dispersion limitation is the factor that structures plant richness in tropical dry forest relicts.eng
dc.format.mimetypeapplication/pdfspa
dc.format.mimetypetext/xmlspa
dc.language.isospaspa
dc.publisherUniversidad Distrital Francisco José de Caldasspa
dc.rightsColombia forestal - 2023spa
dc.rights.urihttps://creativecommons.org/licenses/by-sa/4.0/spa
dc.sourcehttps://revistas.udistrital.edu.co/index.php/colfor/article/view/19858spa
dc.subjectfragmentationeng
dc.subjectspecies-area relationship (SAR)eng
dc.subjectphylogeneticseng
dc.subjectconservationeng
dc.subjecttropical dry foresteng
dc.subjectfragmentaciónspa
dc.subjectrelación especies-área (SAR)spa
dc.subjectfilogenéticaspa
dc.subjectconservaciónspa
dc.subjectbosque seco tropicalspa
dc.titleBiogeografía de islas de los relictos de bosque seco del valle geográfico del río Cauca (Colombia)spa
dc.typeArtículo de revistaspa
dc.identifier.doi10.14483/2256201X.19858
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.localJournal articleeng
dc.title.translatedIsland Biogeography of Dry Forest Relict of the Cauca River Geographical Valley (Colombia)eng
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.relation.referencesAckerly, D. D., & Reich, P. B. (1999). Convergence and correlations among leaf size and function in seed plants: a comparative test using independent contrasts. American Journal of Botany 86, 1272-1281. Arcadia, L. (2013). Lichen biogeography at the largest scales. The Lichenologist, 45(4), 565-578. https://doi.org/10.1017/S0024282913000170 Brown, J. H., & Kodric-Brown, A. (1977). Turnover rates in insular biogeography: effect of immigration on extinction. Ecology, 58(2), 445-449. Casanoves, F., Pla, L., Di Rienzo, J. A., & Díaz, S. (2010). FDiversity: A software package for the integrated analysis of functional diversity. Methods in Ecology and Evolution, 2, 233-237. https://doi.org/10.1111/j.2041-210X.2010.00082.x Cavender-Bares, J., Kozak, K. H., Fine, P. V. A. & Kembel, S. (2009). The merging of community ecology and phylogenetic biology. Ecology Letters, 12, 693-715. https://doi.org/10.1111/j.1461-0248.2009.01314.x Coleman, B. D., Mares, A. M., Willig, M. R., & Hsieh, Y. H. (1982). Randomness, area, and species richness. Ecology, 63(4), 1121-1133. https://doi.org/10.2307/1937249 Connor, E. F., & McCoy, E. D. (1979). Statistics and biology of the species-area relationship. American Naturalist, 113(6), 791-833. https://doi.org/10.1086/283438 Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., & Böhner, J. (2015). System for automated geoscientific analyses (SAGA) v. 2.1.4. Geoscientific Model Development, 8(7), 1991-2007. https://doi.org/10.5194/gmd-8-1991-2015 Fick, S. E., & Hijmans, R. J. (2017). Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302-4315. https://doi.org/10.1002/joc.5086 Gaston, K., & Blackburn, T. (2000). Pattern and process in macroecology. Blackwell Science. Gotelli, N. J., & Entsminger, G. L. (1999). EcoSim: null models software for ecology. Version 4.0. Acquired Intelligence & Kesey-Bear. http://homepages.together.net/gentsmin/ecosim.htm Guimarães, P. R., & Guimarães, P. (2006). Improving the analyses of nestedness for a large of metrics. Environmental Modelling & Software, 21, 1512-1513. https://doi.org/10.1016/j.envsoft.2006.04.002. Hammer, Ø., Harper, D.A.T. & Ryan, P.D. (2001). PAST-Palaeontological statistics. https://www.uv.es/pardomv/pe/2001_1/past/pastprog/past.pdf Harvey, P.H. & Pagel, M.D. (1991). The comparative method in evolutionary biology. Oxford University Press. Helmus, M. R., Bland, T. J., Williams, C. K. & Ives, A. R. (2007). Phylogenetic measures of biodiversity. American Naturalist, 169(3),68-83. https://doi.org/10.1086/511334 Helmus, M. R., Keller, W., Paterson, M. J., Yan, N. D., Cannon, C. H. & Rusak, J. A. (2010). Communities contain closely related species during ecosystem disturbance. Ecology Letters, 13, 162-174. https://doi.org/10.1111/j.1461-0248.2009.01411.x Helmus, M. R., & Ives, A. R. (2012). Phylogenetic diversity-area curves. Ecology, 93, S31-S43. https://doi.org/10.1890/11-0435.1 Karadimou, E. K., Kallimanis, A. S., Tsiripidis, I., & Dimopoulos, P. (2016). Functional diversity exhibits a diverse relationship with area, even a decreasing one. Scientific Reports, 6, 35420. https://doi.org/10.1038/srep35420 Laurance, W. F. (2008). Theory meets reality: How habitat fragmentation research has transcended island biogeographic theory. Biological Conservation, 141, 1731-1744. Laurance, W. F. (2010). Habitat destruction: Death by a thousand cuts. In N. Sodhi & P. Ehrlich (Eds.), Conservation Biology for All (pp. 73-87). Oxford University Press. Lomolino, M. V. (2000). Ecology's most general, yet protean pattern: the species±area relationship. Journal of Biogeography, 27, 17-26. Lomolino, M., Brown, J., & Davis, R. (1989). Island biogeography of montane forest mammals in the American Southwest. Ecology, 70(1), 18-194. https://doi.org/10.2307/1938425 MacArthur, R. H., & Wilson, E. O. (1967). The theory of island biogeography. Princeton University Press. Mahecha, O., Garlacz, R. M., Andrade, G., Prieto, C., & Pyrcz, T. W. (2019). Island biogeography in continental areas: Inferring dispersal based on distributional patterns of Pronophilina butterflies (Nymphalidae: Satyrinae) in the north Andean massifs. Revista Mexicana de Biodiversidad, 90(1), 2796. https://doi.org/10.22201/ib.20078706e.2019.90.2796 Mayfield, M. M., & Levine, J. M. (2010). Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters, 13, 1085-1093. https://doi.org/10.1111/j.1461-0248.2010.01509.x McCune, B., Grace, J. B., & Urban, D. L. (2002). Analysis of ecological communities (vol. 28). Gleneden Beach, OR: MjM software design. Méndez-Castro, F., Bader, M. Y., Mendieta-Leiva, G., & Rao, D. (2018). Islands in the trees: A biogeographic exploration of epiphyte‐dwelling spiders. Journal of Biogeography, 45, 2262-2271. https://doi.org/10.1111/jbi.13422 Miles, L., Newton, A., DeFries, R., Ravilious, C., May, I., Blyth, S., Kapos, V., & Gordon, J. (2006). A global overview of the conservation status of tropical dry forests. Journal of Biogeography, 33(3), 491-505. https://doi.org/10.1111/j.1365-2699.2005.01424.x Patterson, B. D., & Atmar, W. (1986). Nested subsets and the structure of insular mammalian faunas and archipelagos. In L. R. Heaney & B. D. Patterson (Eds.), Island Biogeography of Mammals. Academic Press, London. 16 pp. Patiño, J., Whittaker, R. J., Borges, P. A, Fernández‐Palacios, J. M., Ah‐Peng, C., Araújo, M. B., & de Nascimento L. (2017). A roadmap for island biology: 50 fundamental questions after 50 years of The Theory of Island Biogeography. Journal of Biogeography, 44(5), 963-983. https://doi.org/10.1111/jbi.12986 Pizano, C., & García, H. (Editores) (2014). El bosque seco tropical en Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Ramos, J. E., & Silverstone, P. A. (2018). Catálogo de la flora relictual del valle geográfico del río Cauca. Missouri Botanical Garden Press. Rosenzweig, M. L. (1995). Species diversity in space and time. University of Cambridge Press, Cambridge. Stan, K., & Sánchez-Azofeifa, A. (2019). Tropical dry forest diversity, climatic response, and resilience in a changing climate. Forests., 10(5), 443. https://doi.org/10.3390/f10050443 Sklenár, P., Hedberg, I., & Cleef, A. M. (2014). Island biogeography of tropical alpine floras. Journal of Biogeography, 41, 287-297. https://doi.org/10.1111/jbi.12212 Slik, J. W. F., Franklin, J., Arroyo-Rodríguez, V., Field, R., Aguilar, S., Aguirre, N., Ahumada, J., Aiba, S.-I., Alves, L. F., K., A., Avella, A., Mora, F., Aymard C., G. A., Báez, S., Balvanera, P., Bastian, M. L., Bastin, J.-F, Bellingham, P. J., van den Berg, & E. Zang, R. (2018). Phylogenetic classification of the world's tropical forests. PNAS, 115(8), 1837-1842. https://doi.org/10.1073/pnas.1714977115 Scheiner, S. M., Chiarucci, A., Fox, G. A., Helmus, M. R., McGlinn, D. J., & Willig, M. R. (2011). The underpinnings of the relationship of species richness with space and time. Ecological Monographs, 81, 195-213. https://doi.org/10.1890/10-1426.1 StatSoft (2005). STATISTICA (Data analysis software system), version 7.1. https://www.statsoft.com Tabarelli, M., Mantovani, W., & Peres, C.A. (1999). Effects of habitat fragmentation on plant guild structure in the montane Atlantic forest of southern Brazil. Biological Conservation, 91, 119-127. https://doi.org/10.1016/S0006-3207(99)00085-3 Tjørve, E. (2003). Shapes and functions of species-area curves: A review of possible models. Journal of Biogeography, 30, 827-835. Torres, A. M., Bautista Adarve, J., Cárdenas, M., Vargas, J. A., Londoño, V., Rivera, K., Home, J., Duque, O. L., & González, A. M. (2012). Dinámica sucesional de un fragmento de bosque seco tropical del Valle del Cauca, Colombia. Biota Colombiana, 13(2), 66-85. Triantis, K. A., Mylonas, M., Lika, K., & Vardinoyannis, K. (2003). A model for the species–area–habitat relationship. Journal of Biogeography, 30, 19-27. https://doi.org/10.1046/j.1365-2699.2003.00805.x Webb, C. O., Ackerly, D. D., McPeek, M. A., & Donoghue, M. J. (2002). Phylogenies and community ecology. Annual Review of Ecology, Evolution, and Systematics, 33, 475-505. ttps://doi.org/10.1146/annurev.ecolsys.33.010802.150448 Wiens, J. J., Ackerly, D. D., Allen, A. P., Anacker, B. L., Buckley, L. B., Cornell, H. V., Damschen, E. L., Davies, J., Grytnes, J.-A., Harrison, S. P., Hawkins, B. A., Holt, R. D., McCain, C. M., & Stephens, P. R. (2010). Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters, 13, 1310-1324. https://doi.org/10.1111/j.1461-0248.2010.01515.x Williams, C. B. (1943). Area and the number of species. Nature, 152, 264-267. https://doi.org/10.1038/152264a0 Williams, C. B. (1964). Patterns in the balance of nature and related problems in quantitative ecology. Academic Press. Wright, S. J. (1985). How isolation affects rates of turnover of species on islands. Oikos, 44(2), 331-340. https://doi.org/10.2307/3544708spa
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.relation.citationvolume26spa
dc.relation.citationissue2spa
dc.relation.citationeditionNúm. 2 , Año 2023 : Julio-diciembrespa
dc.relation.ispartofjournalColombia forestalspa
dc.identifier.eissn2256-201X
dc.identifier.urlhttps://doi.org/10.14483/2256201X.19858
dc.relation.citationstartpage15
dc.relation.citationendpage28
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/19858/19233
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/19858/19392
dc.type.contentTextspa
dspace.entity.typePublicationspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Colombia forestal - 2023
Excepto si se señala otra cosa, la licencia del ítem se describe como Colombia forestal - 2023