Mostrar el registro sencillo del ítem

dc.contributor.authorVásquez Sogamoso, Santiagospa
dc.contributor.authorQuintero, Kelly Leanispa
dc.contributor.authorArroyave-Rojas, Joan Amirspa
dc.contributor.authorCañola, Hernan Daríospa
dc.date.accessioned2023-07-01 10:12:26
dc.date.accessioned2023-09-19T21:10:44Z
dc.date.available2023-07-01 10:12:26
dc.date.available2023-09-19T21:10:44Z
dc.date.issued2023-07-01
dc.identifier.issn0120-0739
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/44523
dc.description.abstractLos ecosistemas tropicales tienen altas limitaciones en la disponibilidad natural de fósforo en el suelo, condición que se intensifica con su pérdida y fragmentación. En paisajes modificados, la relación entre árboles aislados y la precipitación puede representar una entrada de PO₄-P al suelo. Este estudio realiza mediciones sobre 16 individuos de 4 especies de árboles aislados: Cariniana pyriformis, Cedrela odorata, Luehea seemannii y Nectandra reticulata. Se evaluaron 9 rasgos funcionales en cada individuo y las concentraciones de PO₄-P en los flujos de partición de la precipitación. Se encontró una mayor deposición de PO₄-P en individuos de N. reticulata y L. seemannii, que presentaron una configuración específica de rasgos funcionales, i.e., una mayor área foliar, una mayor cobertura de epífitas y un mayor porcentaje en densidad de copa. Estos resultados resaltan el papel de estos rasgos funcionales en el mejoramiento de las condiciones biogeoquímicas del suelo en paisajes modificados.spa
dc.description.abstractTropical ecosystems have high limitations regarding the natural availability of soil phosphorus, a condition that intensifies with their loss and fragmentation. In modified landscapes, the relationship between isolated trees and precipitation may represent an input of PO₄-P into the soil. This study measured 16 individuals of four isolated tree species: Cariniana pyriformis, Cedrela odorata, Luehea seemannii, and Nectandra reticulata. Nine functional traits of each individual and the concentrations of PO₄-P in the precipitation partition flows were evaluated. The highest concentrations of soil PO₄-P were found in individuals of N. reticulata and L. seemannii, which exhibited a specific configuration of functional traits, i.e., a higher leaf area, a higher epiphyte cover, and a higher percentage of canopy density. These results highlight the role of these functional traits in improving soil biogeochemical conditions in modified landscapes.eng
dc.format.mimetypeapplication/pdfspa
dc.format.mimetypetext/xmlspa
dc.language.isospaspa
dc.publisherUniversidad Distrital Francisco José de Caldasspa
dc.rightsColombia forestal - 2023spa
dc.rights.urihttps://creativecommons.org/licenses/by-sa/4.0/spa
dc.sourcehttps://revistas.udistrital.edu.co/index.php/colfor/article/view/20026spa
dc.subjectnutrient limitationeng
dc.subjectprecipitationeng
dc.subjectisolated treeseng
dc.subjectinterceptioneng
dc.subjectlimitación de nutrientesspa
dc.subjectprecipitaciónspa
dc.subjectárboles aisladosspa
dc.subjectinterceptaciónspa
dc.titleInfluencia de rasgos funcionales en la deposición de ortofosfatos en paisajes interandinos modificados en Colombiaspa
dc.typeArtículo de revistaspa
dc.identifier.doi10.14483/2256201X.20026
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.localJournal articleeng
dc.title.translatedInfluence of Functional Traits on Orthophosphate Deposition in Modified Inter-Andean Landscapes in Colombiaeng
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.relation.referencesAnna, K. I., Sylwia, Ł., Marcin, Z., Ewa, S. O., & Wojtan, B. (2020). Variability of leaf wetting and water storage capacity of branches of 12 deciduous tree species. Forests, 11(11), 1158. https://doi.org/10.3390/f11111158 Baptista, M. D., Livesley, S. J., Parmehr, E. G., Neave, M., & Amati, M. (2018). Variation in leaf area density drives the rainfall storage capacity of individual urban tree species. Hydrological Processes, 32(25), 3729-3740. https://doi.org/10.1002/hyp.13255 Cano-Arboleda, L. V., Villegas, J. C., Restrepo, A. C., & Quintero-Vallejo, E. (2022). Complementary effects of tree species on canopy rainfall partitioning: New insights for ecological restoration in Andean ecosystems. Forest Ecology and Management, 507(September 2021), 119969. https://doi.org/10.1016/j.foreco.2021.119969 Chiwa, M. (2020). Ten-year determination of atmospheric phosphorus deposition at three forested sites in Japan. Atmospheric Environment, 223(December), 117247. https://doi.org/10.1016/j.atmosenv.2019.117247 Dantas de Paula, M., Forrest, M., Langan, L., Bendix, J., Homeier, J., Velescu, A., Wilcke, W., & Hickler, T. (2021). Nutrient cycling drives plant community trait assembly and ecosystem functioning in a tropical mountain biodiversity hotspot. New Phytologist, 232(2), 551-566. https://doi.org/10.1111/nph.17600 Duque-Gardeazábal, N., Zamora, D., Vega-Viviescas, C., Arboleda, P., & Rodríguez, E. (2018). Analysis of precipitation features estimated by reanalysis datasets in the Magdalena Cauca Macrobasin, Colombia. Revista Hidrolatinoamericana de Jóvenes Investigadores y Profesionales, 2(1), 22-25. http://iahr.org/Web/News_Journals/Journals/Journal_of_Latin_American_Young_Professionals/Portal/Journals/Journal_of_Latin_American_Young_Professionals.aspx?hkey=a5e8f214-5ee1-4054-9dd5-877170aadf62 Ellsworth, D. S., Crous, K. Y., De Kauwe, M. G., Verryckt, L. T., Goll, D., Zaehle, S., Bloomfield, K. J., Ciais, P., Cernusak, L. A., Domingues, T. F., Dusenge, M. E., García, S., Guerrieri, R., Ishida, F. Y., Janssens, I. A., Kenzo, T., Ichie, T., Medlyn, B. E., Meir, P., … Wright, I. J. (2022). Convergence in phosphorus constraints to photosynthesis in forests around the world. Nature Communications, 13(1), 5005. https://doi.org/10.1038/s41467-022-32545-0 Fleischer, K., Rammig, A., De Kauwe, M. G., Walker, A. P., Domingues, T. F., Fuchslueger, L., García, S., Goll, D. S., Grandis, A., Jiang, M., Haverd, V., Hofhansl, F., Holm, J. A., Kruijt, B., Leung, F., Medlyn, B. E., Mercado, L. M., Norby, R. J., Pak, B., … Lapola, D. M. (2019). Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition. Nature Geoscience, 12(9), 736-741. https://doi.org/10.1038/s41561-019-0404-9 Ginebra-Solanellas, R. M., Holder, C. D., Lauderbaugh, L. K., & Webb, R. (2020). The influence of changes in leaf inclination angle and leaf traits during the rainfall interception process. Agricultural and Forest Meteorology, 285-286(January), 107924. https://doi.org/10.1016/j.agrformet.2020.107924 Hou, E., Luo, Y., Kuang, Y., Chen, C., Lu, X., Jiang, L., Luo, X., & Wen, D. (2020). Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nature Communications, 11(1), 637. https://doi.org/10.1038/s41467-020-14492-w Ilstedt, U., Bargués Tobella, A., Bazié, H. R., Bayala, J., Verbeeten, E., Nyberg, G., Sanou, J., Benegas, L., Murdiyarso, D., Laudon, H., Sheil, D., & Malmer, A. (2016). Intermediate tree cover can maximize groundwater recharge in the seasonally dry tropics. Scientific Reports, 6(February), 21930. https://doi.org/10.1038/srep21930 Kumar Gautam, M., Lee, K. S., & Song, B. Y. (2017). Deposition pattern and throughfall fluxes in secondary cool temperate forest, South Korea. Atmospheric Environment, 161(June 2018), 71-81. https://doi.org/10.1016/j.atmosenv.2017.04.030 Lira-Martins, D., Humphreys-Williams, E., Strekopytov, S., Ishida, F. Y., Quesada, C. A., & Lloyd, J. (2019). Tropical tree branch-leaf nutrient scaling relationships vary with sampling location. Frontiers in Plant Science, 10(July), 877. https://doi.org/10.3389/fpls.2019.00877 Lu, X., Liu, Y., Liu, L., Zhang, Z., Hu, F., Liu, X., & Sun, X. (2020). Rainfall partitioning and associated nitrate and sulfate fluxes along a slope gradient in a subtropical broadleaved forest. Journal of Hydrology, 591(May), 125584. https://doi.org/10.1016/j.jhydrol.2020.125584 Luna-Robles, E. O., Cantú-Silva, I., González-Rodríguez, H., Marmolejo-Monsiváis, J. G., Yáñez-Díaz, M. I., & Béjar-Pulido, S. J. (2019). Nutrient input via gross rainfall, throughfall and stemflow in scrubland species in northeastern Mexico. Revista Chapingo, Serie Ciencias Forestales y Del Ambiente, 25(2), 235-251. https://doi.org/10.5154/r.rchscfa.2018.12.096 Magliano, P. N., Whitworth-Hulse, J. I., Florio, E. L., Aguirre, E. C., & Blanco, L. J. (2019). Interception loss, throughfall and stemflow by Larrea divaricata: The role of rainfall characteristics and plant morphological attributes. Ecological Research, 34(6), 753-764. https://doi.org/10.1111/1440-1703.12036 National Institutes of Health (2019). Image J, Image processing and analysis in Java. https://imagej.nih.gov/ij/index.html Nytch, C. J., Meléndez-Ackerman, E. J., Pérez, M. E., & Ortiz-Zayas, J. R. (2019). Rainfall interception by six urban trees in San Juan, Puerto Rico. Urban Ecosystems, 22(1), 103-115. https://doi.org/10.1007/s11252-018-0768-4 Oka, A., Takahashi, J., Endoh, Y., & Seino, T. (2021). Bark effects on stemflow chemistry in a Japanese temperate forest I. The role of bark surface morphology. Frontiers in Forests and Global Change, 4(April), 654375. https://doi.org/10.3389/ffgc.2021.654375 Oliva Carrasco, L., Bucci, S. J., Di Francescantonio, D., Lezcano, O. A., Campanello, P. I., Scholz, F. G., Rodríguez, S., Madanes, N., Cristiano, P. M., Hao, G. Y., Holbrook, N. M., & Goldstein, G. (2015). Water storage dynamics in the main stem of subtropical tree species differing in wood density, growth rate and life history traits. Tree Physiology, 35(4), 354-365. https://doi.org/10.1093/treephys/tpu087 Parker, G. G. (1983). Throughfall and stemflow in the forest nutrient cycle. Advances in Ecological Research, 13(C), 57–133. https://doi.org/10.1016/S0065-2504(08)60108-7 Porada, P., Van Stan, J. T., & Kleidon, A. (2018). Significant contribution of non-vascular vegetation to global rainfall interception. Nature Geoscience, 11(8), 563-567. https://doi.org/10.1038/s41561-018-0176-7 RStudio Team. (2021). RStudio: integrated development environment for R. http://www.rstudio.com/ Rodríguez Torres, L. D. (2021). Análisis multitemporal utilizando imágenes Landsat para la determinación de la pérdida de la capacidad productiva en la cuenca media del Río Magdalena [Trabajo de grado, Universidad Militar Nueva Granada]. http://hdl.handle.net/10654/38983 Runyan, C. W., D’Odorico, P., Vandecar, K. L., Das, R., Schmook, B., & Lawrence, D. (2013). Positive feedbacks between phosphorus deposition and forest canopy trapping, evidence from Southern Mexico. Journal of Geophysical Research: Biogeosciences, 118(4), 1521-1531. https://doi.org/10.1002/2013JG002384 Sadeghi, S. M. M., Van Stan, J. T., Pypker, T. G., Tamjidi, J., Friesen, J., & Farahnaklangroudi, M. (2018). Importance of transitional leaf states in canopy rainfall partitioning dynamics. European Journal of Forest Research, 137(1), 121-130. https://doi.org/10.1007/s10342-017-1098-4 Salgado-Negret, B. (2016). Ecología funcional como aproximación al estudio, conservación, manejo y conservación de la biodiversidad. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat02704a&AN=unc.000838205&lang=es&site=eds-live Sohrt, J., Uhlig, D., Kaiser, K., von Blanckenburg, F., Siemens, J., Seeger, S., Frick, D. A., Krüger, J., Lang, F., & Weiler, M. (2019). Phosphorus fluxes in a temperate forested watershed: Canopy leaching, runoff sources, and in-stream transformation. Frontiers in Forests and Global Change, 2(December), 85. https://doi.org/10.3389/ffgc.2019.00085 Su, L., Zhao, C., Xu, W., & Xie, Z. (2019). Hydrochemical fluxes in bulk precipitation, throughfall, and stemflow in a mixed evergreen and deciduous broadleaved forest. Forests, 10(6), 507. https://doi.org/10.3390/f10060507 Suescún, D., Villegas, J. C., León, J. D., & Correa-Londoño, G. A. (2021). Observational insights on the effects of land use and precipitation seasonality on water-driven circulation of phosphorus in the tropical Andes. Water, Air, and Soil Pollution, 232(6), 250. https://doi.org/10.1007/s11270-021-05195-z van Stan, J. T., & Allen, S. T. (2020). What we know about stemflow’s infiltration area. Frontiers in Forests and Global Change, 3(May), 61. https://doi.org/10.3389/ffgc.2020.00061 van Stan, J. T., & Pypker, T. G. (2015). A review and evaluation of forest canopy epiphyte roles in the partitioning and chemical alteration of precipitation. Science of the Total Environment, 536, 813-824. https://doi.org/10.1016/j.scitotenv.2015.07.134 Vandecar, K. L., Runyan, C. W., D’Odorico, P., Lawrence, D., Schmook, B., & Das, R. (2015). Phosphorus input through fog deposition in a dry tropical forest. Journal of Geophysical Research: Biogeosciences, 120(12), 2493-2504. https://doi.org/10.1002/2015JG002942 Vitousek, P. M., Porder, S., Houlton, B. Z., Oliver, A., Vitousek, P. M., Porder, S., Houlton, B. Z., & Chadwick, O. A. (2010). Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. http://www.jstor.org/stable/27797785 Wilcke, W., Velescu, A., Leimer, S., Bigalke, M., Boy, J., & Valarezo, C. (2019). Temporal trends of phosphorus cycling in a tropical montane forest in ecuador during 14 years. Journal of Geophysical Research: Biogeosciences 124(5), 1370-1386. https://doi.org/10.1029/2018JG004942 Yue, K., De Frenne, P., Fornara, D. A., Van Meerbeek, K., Li, W., Peng, X., Ni, X., Peng, Y., Wu, F., Yang, Y., & Peñuelas, J. (2021). Global patterns and drivers of rainfall partitioning by trees and shrubs. Global Change Biology, 27(14), 3350-3357. https://doi.org/10.1111/gcb.15644 Zhou, K., Lu, X., Mori, T., Mao, Q., Wang, C., Zheng, M., Mo, H., Hou, E., & Mo, J. (2018). Effects of long-term nitrogen deposition on phosphorus leaching dynamics in a mature tropical forest. Biogeochemistry, 138(2), 215-224. https://doi.org/10.1007/s10533-018-0442-1spa
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.relation.citationvolume26spa
dc.relation.citationissue2spa
dc.relation.citationeditionNúm. 2 , Año 2023 : Julio-diciembrespa
dc.relation.ispartofjournalColombia forestalspa
dc.identifier.eissn2256-201X
dc.identifier.urlhttps://doi.org/10.14483/2256201X.20026
dc.relation.citationstartpage29
dc.relation.citationendpage43
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/20026/19231
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/20026/19391
dc.type.contentTextspa
dspace.entity.typePublicationspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Colombia forestal - 2023
Excepto si se señala otra cosa, la licencia del ítem se describe como Colombia forestal - 2023