Mostrar el registro sencillo del ítem

Variabilidad morfológica en el tomate pajarito (Lycopersicon esculentum var.cerosiforme) precursor del tomate cultivado

dc.creatorMedina, Clara Inés
dc.creatorLobo, Mario
dc.date2001-07-31
dc.date.accessioned2020-08-04T20:35:22Z
dc.date.available2020-08-04T20:35:22Z
dc.identifierhttp://revista.corpoica.org.co/index.php/revista/article/view/186
dc.identifier10.21930/rcta.vol3_num2_art:186
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/4493
dc.descriptionTo study the phenotypic variability of a “cherry” collection of tomato of the type in comparison with the vintage tomato cultivar 'Marglobe', an experiment was carried out at “La Selva”, Research Centre of Corpoica, located in Rionegro, Antioquia, at 2,120 masl, with an average temperature of 170C and a relative humidity of 78%. Fifty descriptors were evaluated in this study, 39 were qualitative and l1 quantitative. Polymorphism was found in 34 out of 39 qualitative characteristics, and in the 11 quantitative variables. The qualitative, quantitative and qualitative-quantitative clusters analysis obtained with the polymorphic variables did not show a clear pattern of distribution between materials from the Origin Centre (Perú-Ecuador) and from the Domestication Centre (México-Central America). These results show ample qualitative and quantitative variability in the cherry type tomato collection, as well as ample distribution and arrangement of characters within individual accesions, which indicates the great potential to use this collection as well as in breeding programs. The qualitative-quantitative phenogram obtained by transforming the last type of variables to additive binary scales, with a maximum of four values by characteristic, exhibited discriminatory power between the cherry type tomato and the vintage cultivar 'Marglobe', which was not so clear for the qualitative phenogram based on binary values for the variables and for the quantitative phenogram based on distances obtained from standardized variables.en-US
dc.descriptionSe realizó la caracterización y evaluación morfológica de una colección del tomate tipo “cereza”, conocido comúnmente como "pajarito", o "vagabundo" (Lycopersicon esculentum var. cerasiforme), comparándola con el cultivar obsoleto de frutos de mesa de tamaño grande 'Marglobe' (Lycopersicon esculentum var. esculentum ). El estudio se llevó a cabo en el Centro de Investigación “La Selva”, de la Corporación Colombiana de Investigación Agropecuaria, Corpoica, ubicado a 2.120 msnm, con temperatura promedio de 170C, en un área perteneciente a la formación ecológica de bosque húmedo montano bajo. Para el efecto, se registraron 39 variables de índole cualitativa y 11 de naturaleza cuantitativa. Se encontró polimorfismo en 34 de los 39 atributos cualitativos y en los 11de naturaleza cuantitativa. Los análisis de conglomerados cualitativos, cuantitativos y cualitativo-cuantitativo, no indicaron un patrón claro de distribución entre accesiones del Centro de Origen (Perú-Ecuador) y del Centro de Domesticación (México-Mesoamérica), con intercalamiento en los fenogramas de estos materiales y materiales de otras zonas del mundo. Los resultados señalaron amplia variabilidad cualitativa y cuantitativa y diversos niveles de arreglo de las variables a nivel de accesiones individuales, lo cual señala un amplio potencial de utilización per se de la colección y para programas de mejoramiento. EI fenograma cualitativo-cuantitativo, transformando la última categoría de variables a escalas aditivas binarias, con un máximo de cuatro intervalos por característica, permitió discriminar entre la variedad botánica cerasiforme y el cultivar de tomates grandes 'Marglobe', lo cual no fue tan evidente a nivel del fenograma cualitativo, construido en escala binaria, y el cuantitativo con base en distancias derivadas de variables estandarizadas. es-ES
dc.formatapplication/pdf
dc.languagespa
dc.publisherCorporación Colombiana de Investigación Agropecuaria (Agrosavia)es-ES
dc.relationhttp://revista.corpoica.org.co/index.php/revista/article/view/186/190
dc.sourceCiencia y Tecnología Agropecuaria; Vol. 3 No. 2 (2001); 39-50en-US
dc.sourceCiencia & Tecnología Agropecuaria; Vol. 3 Núm. 2 (2001); 39-50es-ES
dc.sourcerevista Corpoica Ciência e Tecnologia Agropecuária; v. 3 n. 2 (2001); 39-50pt-BR
dc.source2500-5308
dc.source0122-8706
dc.source10.21930/rcta.vol3-num2
dc.subjectcherry tomatoen-US
dc.subjectcharacterizationen-US
dc.subjectevaluationen-US
dc.subjectphenograms.en-US
dc.subjectTomate cerezaes-ES
dc.subjectTomate pajaritoes-ES
dc.subjectCaractetizaciónes-ES
dc.subjectEvaluaciónes-ES
dc.subjectFenogramases-ES
dc.subjectCherry tomatoes-ES
dc.titleMorphologic variability in the tomato pajarito (Lycopersicon esculentum var. cerasiforme), a precursor of cultivated tomato.en-US
dc.titleVariabilidad morfológica en el tomate pajarito (Lycopersicon esculentum var.cerosiforme) precursor del tomate cultivadoes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.citationsAli, M.; Copeland, L.O.; Elias, S.G. and Kelly, J.D. 1995. Relationships between genetic distance and heterosis for yield and morphological traits in winter canola (Brassica napus). Theoretical and Applied Genetics 91: 118-121. https://doi.org/10.1007/BF00220867 Bath, G.M. 1970. Multivariate analysis approachto selection of parents for hybridization aiming at yield improvement in self-pollinated crops. Australian Journal of Agricultural Research 21: 1-7. https://doi.org/10.1071/AR9700001 Beusenlick, P.R.and Steiner,J .J. 1992. A proposed framework for identifying, quantifying and using plant germplasm resources. Field Crops Research29: 261-272. https://doi.org/10.1016/0378-4290(92)90029-9 Brown, A.H.D.; Grace, J.P. and Speer, S. S. 1987. Designation of a "core collection" of perennial Glycine. Soybean Genetics Newsletter No. 14: 59-70. Cain, A.J. and Harrison, G.A. 1958. An analysis of the Taxonomist's Judgement of Affinity. Zoological Society of London, Proceedings 131: 85. https://doi.org/10.1111/j.1096-3642.1958.tb00634.x Cole-Rodgers,P.;Smith, D.W. and Bosland, P. W. 1997. A novel statistical approach to analyze genetic resource evaluations using 'Capsicum' as an example. Crop Science 37: 1000-1002. https://doi.org/10.2135/cropsci1997.0011183X003700030050x Cooper, H.D.; Spillane, C.; Kermali, I. and Anizhetty, N. M. 1998. Harnessing plant genetic resources for sustainable agriculture. Plant Genetic Resources Newsletter No 114: 1-8. Cox D. J. and Frey,K.J. 1984. Improving cultivated oats(Avena sativa L.) with alleles for vegetative growth index from A. sterilis L. Theoretical and Applied Genetics 68: 239-245. https://doi.org/10.1007/BF00266897 Cox. T. S. 1979. Inheritance and complementarity of genes for high groat protein from two Avena species. Iowa State University Library Ames. Iowa. (M. Sc. Thesis). Coewn, N.M. 1987.Relationships between three measures of genetic distance and breeding behaviour in oats (Avena sativa L.). Genome 29: 97-106. https://doi.org/10.1139/g87-017 Crill, P.; Burgis, D.S.; Jones, J. P. and Augustine, J. 1977. Tomato variety development and multiple disease control with host resistance, Florida Agricultural Experiment Station, Gainesville.35p. (Monograph Series No. 10). Crisci, J. V. y López, M.F. 1983. Introducción a la teoría y práctica de la taxonomía numérica. Serie de Biología. Secretaria Generalde la OEA. Programa Regional de Desarrollo Científico y Tecnológico.Washington, D.C. 132p. (Monografía No. 26) Cuartero J.; Gámez-Guillamon, M. and Diaz,A. 1985. Catalogue of collections of Lycopersicon from Peruvian central areas. Report Tomato Genetic Cooperative 35: 32-35. FAO. 1996.Plan de acción mundial para la conservación y utilización sostenible de los recursos fitogenéticos para la alimentación y la agricultura. FAO, Roma. 64 p. Fonseca, S. and Patterson, F.L. 1968. Hybrid vigor and a seven parent diallel cross in common winter wheat. Crop Science 8: 85-88. https://doi.org/10.2135/cropsci1968.0011183X000800010025x Frankel, O. H. 1989. Principles and strategies of evaluation. In: A.H.D. Brown; O. H. Frankel; D. R. Marshall and J.T. Williams, (Eds.). The Use of Plant Genetic Resources. Cambridge University Press, Cambridge, U. K. p. 245-260. Gepts, P. 1993. The use of molecular and biochemical markers in crop evolution studies. Evolutionary Biology 27: 5t-94. https://doi.org/10.1007/978-1-4615-2878-4_3 Ghaderi, A.; Shisgegar, M.; Rezai, A. and Ehdaie, B. 1979. Multivariate analysis of genetic diversity for yield and its components in mung bean. American Society for Horticultural Science. Journal 104: 728-731. Ghaderi, A.; Adams, M.W. and Nassib, A. A. 1984. Relationships between genetic distance and heterosis for yield and morphological traits in dry edible bean and faba bean. Crop Science 24: 37-42. https://doi.org/10.2135/cropsci1984.0011183X002400010009x International Board For Plant Genetic Resources (IBPGR). 1991. Elsevier's Dictionary of Plant Genetic Resources. Elsevier, Amsterdam. 187 p. International Plant Genetics Resources Institute (IPGRI). 1996, Descriptores para el tomate (Lycopersicon spp.). IPGRL Roma. 44P International Plant Genetics Research Institute (IPGRI). 1998a. Genetic diversity is essential for the long-term survival of all living species. Briefing Sheet No 1. IPGRI-FAO. s. p. International Plant Genetics Research Institute (IPGRI). 1998b. Conservation efforts can only be sustainable if linked effectively to the use of plant genetic resources. Briefing Sheet No 4 IPGRI-FAO. s. p. International Plant Genetics Research Institute (IPGRI). 1998c. Genetic resources increase options for environmentally sound agriculture. Briefing Sheet No 2. IPGRI-FAO. s. p. International Plant Genetics Research Institute (IPGRI). 1998d. Plant genetic resources are needed to meet ever-changing challenges to human survival and economic development. Briefing Sheet No 3. IPGRI-FAO. s. p. Jenkins, J. A. 1948. The origin of the cultivated tomato. Economic Botany 2: 379-392. https://doi.org/10.1007/BF02859492 Jenkins, G. 1969. Heterosis and combining ability in hybrids of Avena sativa L. and A. bizantina C. Koch. Journal of Agricultural Science 72: 85-92. https://doi.org/10.1017/S0021859600020438 Keystone Center. 1991. Final Consensus Report: Global initiative for the security and sustainable use of plant genetic resources. Oslo Plenary Session. Genetic Resources Communications Systems, Washington, D,C. Marani, A. 1963. Heterosis and combining ability for yield and components of yield in a diallel cross of two species of cotton. Crop Science 3: 552-55. https://doi.org/10.2135/cropsci1963.0011183X000300060030x Marani, A. and Avieli, E. 1973. Heterosis during the early phases of growth in intraspecific and interspecific crosses of cotton. Crop Science 13: 15-18. https://doi.org/10.2135/cropsci1973.0011183X001300010006x Marshall, D. R. 1989. Limitations to the use of germplasm collections. In: A. H. D. Brown; O. H. Frankel; D. R. Marshall and J. T. Williams, (Eds.). The Use of Plant Genetic Resources. Cambridge University Press, Cambridge, U. K. p. 105-120. Miller, J. C. and Thnksley S. D. 1990. RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theoretical and Applied Genetics 80: 437-448. https://doi.org/10.1007/BF00226743 Moll, R. H.; Salhuana,WS. and Robinson, H. F. 1962. Heterosis and genetic diversity in variety crosses of maize. Crop Science 2: 797-799. https://doi.org/10.2135/cropsci1962.0011183X000200030005x Murty, B. R. and Aanand, I.J. 1965. Combining ability and genetic diversity in some varieties of Linum usitatissimum. Indian Journal of Genetics and Plant Breeding 26: 21-36. Murty, B, R. and Arunachalam, V, 1966. The nature of divergence in relation to breeding system in some crop plants. Indian Journal of Genetics A 26: 188-198. Ordas, A.; Malvar, R.A, and de Ron, A. M. 1994. Relationships among American and Spanish populations of maize. Euphyica 79: 149-161. https://doi.org/10.1007/BF00023586 Paredes, M. 1996. Evaluación de la diversidad genética de tomates: Uso actual y potencial de las técnicasmoleculares. In; A. Cubillos (Ed.). Conservación in situ de especies silvestres del género Lycopersicon. Seminario Taller. INIA. Santiago de Chile, Chile Serie La Platina No 68.p. 25-41. Paterniani, E. and Lonnquist, J, H. 1963. Heterosis in interracial crosses of corn (Zea mays L.). Crop Science 3: 504-507. https://doi.org/10.2135/cropsci1963.0011183X000300060014x Plucknett, D. L.; Smith, N.J.H.; Williams, J. T. and Anishetty, N. M. 1987. Gene banks and the world's food. Princenton University Press, Princenton, NJ. Ramprasad, V.1998. Genetic engineering and the myth of feeding the world. Biotechnology and Development Monitor No. 35: 24. Ramanujam, S.; Tiwari, A. S. and Mehra B. B. 1974. Genetic divergence and hybrid performance in mung bean. Theoretical and Applied Genetics. 45: 211-214. https://doi.org/10.1007/BF00265001 Rick, C. M. 1958. The role of natural hybridization in the drivation of cultivated tomatoes of western South America. Economic Botany n346 -367. https://doi.org/10.1007/BF02860023 Rick, C.M. 1976. Tomato. In: N.W. Simmonds (Ed.).Evolution of crop plants. Longman Group. London. P 268-273. Rick. C. M. 1987. Genetic resources in Lycopersicon. In: D. J. Nevins and R. A. Jones (Eds.).Tomato Biotechnology. Alan Liss Publishers, New York. p. 17-26. Rick, C, M. and Holle, M. 1990. Andean Lycopersicon esculentum var. cerasiforme: genetic variation and its evolutionary significance. Economic Botany 44: 69-78. https://doi.org/10.1007/BF02860476 Rick, C. M, and Yoder, J. I. 1988. Classical and molecular genetics of the tomato: highlights and prospects. Annual Review of Genetics 22: 281-300. https://doi.org/10.1146/annurev.ge.22.120188.001433 Rick, C. M.; Zobel, R. W. and Fobes, 1974, Four peroxidase loci in red fruited tomato species: Genetics and Geographic distribution. National Academy of Sciences. Proceedings 71: 835-839. https://doi.org/10.1073/pnas.71.3.835 Sneath, P. H. and Sokal, R. R. 1923. Numerical Taxonomy. W. H. Freeman and Co., San Francisco. 573p. Sriwatanapongse, S.and Wilsie, C, P. 1968. Intra- and inter-variety crosses of Medicago sativa L. and Medicago falcata L. Crop Science 8: 465-466. https://doi.org/10.2135/cropsci1968.0011183X000800040021x Sun, P, L. F,; Shands, H. L. and Forsberg, R, A. 1972. Inheritance of kernel weight in six spring wheat crosses. Crop Science 12: 1-5. https://doi.org/10.2135/cropsci1972.0011183X001200010001x Timothy, D. H. 1963. Genetic diversity heterosis and the use of exotic stocks in maize in Colombia. Symposium of Statistics, Genetics and Plant Breeding. Raleigh, North Carolina. p. 581-591. Tomato Crop Germplasm Committee. 1996. Tomato crop germplasm committee report, 1996. National Plant Germplasm System USA, Washington. p. 1-6. Van Beuningen, L. T. and Busch, R.H. 1997. Genetic diversity among North American spring wheat cultivars: III. Cluster analysis based on quantitative morphological traits. Crop Science 37: 981-988. https://doi.org/10.2135/cropsci1997.0011183X003700030046x Van Hintum, T. J. L. 1995, Hierarchical approaches to the analysis of genetic diversity in crop plants. In: Core Collections of Plant Genetic Resources. John Wiley & Sons, New York. p. 23-34. Warnock, S. J. 1988. A review of taxonomy and phylogeny of the genus Lycopersicon. HortScience 23:699-673. Williams, C. E. and St Clair, D. A. 1993. Phenetic relationships and levels of variability detected by restriction fragment length polymorphism amplified polymorphic DNA analysis of cultivated and wild accesions of Lycopersicon esculenum. Genome 36: 619-630. https://doi.org/10.1139/g93-083 Wood, D. and Lenne, J. M. 1997. The conservation of agrobiodiversity on-farm: Questioning the emerging paradigm. Biodiversity and Conservation 6: 109-129. https://doi.org/10.1023/A:10183318009390


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem