Mostrar el registro sencillo del ítem

Efecto de la fertilización nitrogenada en la dinámica del óxido nitroso y metano en Brachiaria humidicola (Rendle) Schweickerdt.

dc.creatorPastrana, Iván
dc.creatorReza, Sony
dc.creatorEspinosa, Manuel
dc.creatorSuárez, Emiro
dc.creatorDíaz, Eliecer
dc.date2011-11-23
dc.date.accessioned2020-08-04T20:35:27Z
dc.date.available2020-08-04T20:35:27Z
dc.identifierhttp://revista.corpoica.org.co/index.php/revista/article/view/223
dc.identifier10.21930/rcta.vol12_num2_art:223
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/4510
dc.descriptionLivestock activities cause a significant impact on the environment due to the release of N into the soil, which in turn results in nitrification and the emissions of greenhouse gases (GHG). At Corpoica’s Turipaná Research Center (Cereté, Colombia), we evaluated three different genotypes of B. humidicola (CIAT 16888, CIAT 26159, and CIAT 679) with three levels of nitrogen fertilization application (0, 150, and 300 kg ha-1) in order to determine the flow dynamics of GHG and their relationship to growth and forage production. The results indicated that the best genotype, in terms of production, was CIAT 16888, with an dry matter production of 2,075.32 kg ha-1, a height of 46.87 cm, and leaf/stem ratio of 2.51, with no significant differences with genotype CIAT 679, but with genotype CIAT 26159 (P ≤ 0.05). The flow of GHG (methane and nitrous oxide) increased as the N levels increased, indicating a significant correlation between the grass’s growth and total flows.    en-US
dc.descriptionLas actividades ganaderas causan un impacto significativo en los cambios ambientales, debido a las altas pérdidas de N que promueven procesos de nitrificación y aumento en emisiones de gases efecto invernadero (GEI). En el Centro de Investigación Turipaná de Corpoica (Cereté, Colombia), se evaluaron tres accesiones de B. humidicola (CIAT 16888, CIAT 26159 y CIAT 679) con tres niveles de aplicación de nitrógeno (0, 150 y 300 kg ha-1) con el fin de determinar la dinámica del flujo de gases de efecto invernadero y su relación con el crecimiento y la producción de forraje. Los resultados indicaron que el mejor genotipo, en términos de producción, fue CIAT 16888, con una producción de materia seca 2.075,32 kg ha-1, altura de 46,87 cm y relación hoja/tallo de 2,51, sin diferencias significativas con el genotipo CIAT 679 pero sí con el genotipo CIAT 26159 (P ≤ 0,05). El flujo de gases de efecto invernadero (metano y óxido nitroso) se incrementó con los niveles de N, lo que indica una correlación significativa entre el crecimiento del pasto y los flujos totales.    es-ES
dc.formatapplication/pdf
dc.languagespa
dc.publisherCorporación Colombiana de Investigación Agropecuaria (Agrosavia)es-ES
dc.relationhttp://revista.corpoica.org.co/index.php/revista/article/view/223/230
dc.sourceCiencia y Tecnología Agropecuaria; Vol. 12 No. 2 (2011); 134-142en-US
dc.sourceCiencia & Tecnología Agropecuaria; Vol. 12 Núm. 2 (2011); 134-142es-ES
dc.sourcerevista Corpoica Ciência e Tecnologia Agropecuária; v. 12 n. 2 (2011); 134-142pt-BR
dc.source2500-5308
dc.source0122-8706
dc.source10.21930/rcta.vol12-num2
dc.subjectMethaneen-US
dc.subjectnitrous oxideen-US
dc.subjectB. humidicolaen-US
dc.subjectnitrificationen-US
dc.subjectgreenhouse gases.en-US
dc.subjectMetanoes-ES
dc.subjectÓxido nitrosoes-ES
dc.subjectB. humidicolaes-ES
dc.subjectNitrificaciónes-ES
dc.subjectGases efecto invernaderoes-ES
dc.titleEffect of nitrogen fertilization on nitrous oxide and methane dynamics in Brachiaria humidicola (Rendle) Schweickerdten-US
dc.titleEfecto de la fertilización nitrogenada en la dinámica del óxido nitroso y metano en Brachiaria humidicola (Rendle) Schweickerdt.es-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.citationsBouwman AF, Van Vuuren DP, Derwent RG, Posch, M. 2002. A global analysis of acidification and eutrophication of terrestrial ecosystems. Water Air Soil Poll 141:349-382. https://doi.org/10.1023/A:1021398008726 Capone DG, Popa R, Flood B, Nealson KH. 2006. Geochemistry. Follow the nitrogen. Science 312(5774):708-709. https://doi.org/10.1126/science.1111863 Chu H, Hosen Y, Yagi K. 2007. NO, N2O, CH4 and CO2 fluxes in winter barley field of Japanese Andisol as affected by N fertilizer management. Soil Biol Biochem 39:330-339. https://doi.org/10.1016/j.soilbio.2006.08.003 Ciarlo E. 2009. Controles biológicos y no biológicos de las emisiones de gases nitrogenados (N2O y N2) en suelos agrícolas y ganaderos [Tesis de doctorado en Ciencias Agrícolas]. Buenos Aires: Facultad de Agronomía Universidad de Buenos Aires. [CIAT] Centro Internacional de Agricultura Tropical. 2007. Annual Report Climate Change Project, Informe Anual 2007. Cali, Colombia: Centro Internacional de Agricultura Tropical - CIAT. Desjardins RL, Keng JC. 1999. Nitrous oxide emissions from agricultural sources in Canada. En: Desjardins RL, Keng JC, Hauguen-Kozyra K, editores. Proceedings of the International Workshop on Reducing Nitrous Oxide Emissions from Agroecosystems, Edmonton, Canadá: Agriculture and Agri-Food Canada, Research Branch; Alberta Agriculture, Food and Rural Development, Conservation and Development Branch. Dunfield PF. 2007. The soil methane sink. En: Reay DS, Hewitt CN, Smith KA, Grace J, editors. Greenhouse gas sinks. Wallingford, UK: CAB International. Pp 152-170. https://doi.org/10.1079/9781845931896.0152 Ferreira O. 2008. Flujos de gases de efecto invernadero, potencial de calentamiento global y evaluación de emergía del sistema agroforestal quesungual en el sur de Lempira, Honduras [Tesis de maestría]. Palmira, Colombia: Universidad Nacional de Colombia. Giles J. 2005. Nitrogen study fertilizes fears of pollution. Nature 433:791-799. https://doi.org/10.1038/433791a Glass D. 2003. Nitrogen use efficiency of crop plants: Physiological constraints upon nitrogen absorption. Crit Rev Plant Sci 22:453-470. https://doi.org/10.1080/07352680390243512 Glasser GJ, Winter RE. 1961. Critical valúes of the coefficient of rank correlation for testing the hypothesis of independence. Biometrika 48:444-448. https://doi.org/10.1093/biomet/48.3-4.444 Jarvis SC, Barraclough D. 1991. Variation in mineral nitrogen under grazed grassland swards. Plant Soil 138:177-188. https://doi.org/10.1007/BF00012244 Kammann C, Grünhage L, Jäger HJ, Wachinger G. 2001. Methane fluxes from differentially managed grassland study plots: the important role of CH4 oxidation in grassland with a high potential for CH4 production. Environ Poll 115:261-273. https://doi.org/10.1016/S0269-7491(01)00103-8 Khalil MAK, Rasmussen RA, Shearer MJ. 2002. Atmospheric nitrous oxide: pattern of global change during recent decades and centuries. Chemosphere 47:807-821. https://doi.org/10.1016/S0045-6535(01)00297-1 Klein C, Pinares C, Waghorn G. 2008. Greenhouse gas emissions. En: McDowell RW, editors. Environmental impacts of pasture-based farming. Wallingford, UK: CAB International. pp 1-32. https://doi.org/10.1079/9781845934118.0001 Klemedtsson AK, Klemedtsson L. 1997. Methane uptake in Swedish forest soil in relation to liming and extra N-deposition. Biol Fert Soils 25:296-301. https://doi.org/10.1007/s003740050318 Lata JC, Durand J, Lensi R, Abbadie L. 1999. Stable coexistence contrasted nitrification statuses in a wet tropical savanna system. Fun Ecol 13:762-763. https://doi.org/10.1046/j.1365-2435.1999.00380.x Montenegro J, Abarca S. 2000. Fijación de carbono, emisión de metano y de óxido nitroso en sistemas de producción bovina en Costa Rica. En: Pomareda C, Steinfeld H, editores. Intensificación de la ganadería en Centroamérica: beneficios económicos y ambientales. San José: CATIE; FAO; SIDE. Pp 151-173. Mosier A, Duxbury J, Freney J, Heinemeyer O, Minami K. 1996. Nitrous oxide emissions from agricultural fields: Assessment, measurement, and mitigation. Plant Soil 181:95-108. https://doi.org/10.1007/BF00011296 Mulder EG, Lie TA, Woldendorp JW. 1969. Biology and soil fertility. En: Soil biology. Natural resources research IX. Pub. 741. Paris: UNESCO pp 163-201. Palencia G, Mercado T, Combatt E. 2006. Estudio agroclimático del departamento de Córdoba. Montería: Facultad de Ciencias Agrícolas, Universidad de Córdoba. Rao IM, Kerridge PC, Macedo M. 1996. Adaptation to low fertility acid soils and nutritional requirements of Brachiaria. En: Miles JW, Maass BL, do Valle CB, editores. The biology, agronomy and improvement of Brachiaria. Cali, Colombia: Centro Internacional de Agricultura Tropical - CIAT. Pp 53-71. Raún WR, Johnson GV. 1999. Improving nitrogen use efficiency for cereal production. Agron J 91:357-363. https://doi.org/10.2134/agronj1999.00021962009100030001x Reay D, Hewitt C, Smith K. 2007b. Nitrous oxide: importance, sources and sinks. En: Reay DS, Hewitt CN, Smith KA, Grace J, editors. Greenhouse gas sinks. Wallingford, UK: CAB International. Pp 201-206. https://doi.org/10.1079/9781845931896.0201 Reay D, Smith K, Hewitt C. 2007a. Methane: importance, sources and sinks. En: Reay DS, Hewitt CN, Smith KA, Grace J, editors. Greenhouse gas sinks. Wallingford, UK: CAB International. Pp 143-151. https://doi.org/10.1079/9781845931896.0143 Reza S, Mejia S, Torregroza L, Jiménez N, Espinosa M, Suárez E, Pastrana I, Novoa R. 2011. Emisiones de gases de efecto invernadero por tres accesiones de Brachiaria humidicola y Panicum maximum cv tanzania en el valle medio del Sinú. Boletín Técnico. Cereté, Colombia: Corpoica. Rondón M. 2000. Land use and balances of greenhouse gases in Colombian tropical savannas [Tesis de doctorado]. Ithaca, NY: Cornell University. Ruz BE, White RE, Ball PR. 1995. A comparison of nitrate leaching under clover- based pastures and nitrogen-fertilized grass grazed by sheep. J Agr Sci 125:361-369. https://doi.org/10.1017/S0021859600084860 Smith KA, Mctaggart IP, Tsuruta H. 1997. Emissions of N2O and NO associated with nitrogen fertilization in intensive agriculture, and the potencial for mitigation. Soil Use Manage 13:296-304. https://doi.org/10.1111/j.1475-2743.1997.tb00601.x [SAS] Statistical Analysis System Institute. 2007. SAS STAT User's guide. Versión 9.1. Cary: SAS Institute. Subbarao G, Nakahara K, Hurtado M, Ono H, Moreta D, Salcedo A, Yoshihashi A, Ishikawa T, Ishitani M, Ohnishi-Kameyama M, et al. 2009. Evidence for biological nitrification inhibition in Brachiaria pastures. PNAS 106(41):17302-17307. https://doi.org/10.1073/pnas.0903694106 Subbarao GV, Ishikawa T, Ito O, Nakahara K, Wang HY, Berry WL. 2006b. A bioluminescence assay to detect nitrification inhibitors released from plant roots: a case study with Brachiaria humidicola. Plant Soil 288:101-112. https://doi.org/10.1007/s11104-006-9094-3 Subbarao GV, Ito O, Sahrawat KL, Berry WL, Ankara K, Ishikawa T, Watanabe T, Suenaga K, Rondon M, Rao IM. 2006a. Scope and strategies for regulation of nitrification in agricultural systems- Challenges and opportunities. Crit Rev Plant Sci 25:303-325. https://doi.org/10.1080/07352680600794232 Subbarao G, Wang H, Ito O, Nakahara K, Berry W. 2006c. NH4+ triggers the synthesis and release of biological nitrification inhibition compounds in Brachiaria humidicola roots. Plant Soil 290:245-257. https://doi.org/10.1007/s11104-006-9156-6 Subbarao G, Rondon M, Ito O, Ishikawa T, Rao IM, Nakahara K, Lascano C, Berry W. 2007. Biological nitrification inhibition (BNI) is it a widespread phenomenon? Plant Soil 294:5-18. https://doi.org/10.1007/s11104-006-9159-3 Sylvester-Bradley R, Mosquera D, Mendez JE. 1988. Inhibition of nitrate accumulation in tropical grassland soils: effect of nitrogen fertilization and soil disturbance. J Soil Sci 39:407-416. https://doi.org/10.1111/j.1365-2389.1988.tb01226.x Tejos R, Rodríguez C, Pérez N, Rivero L, Terán, Colmenares M. 1996. Gramíneas forrajeras promisorias para el llano bajo. En: II Seminario Manejo y Utilización de Pastos y Forrajes en Sistemas de Producción Animal. Barinas: Universidad Nacional Ezequiel Zamora. pp. 9-14. Velthof GL, Kuikman PJ, Oenema O. 2003. Nitrous oxide emission from animal manures applied to soil under controlled conditions. Biol Fertil Soils 37:221-230. https://doi.org/10.1007/s00374-003-0589-2 Visscher A, Boeckx P, Cleemput O. 2007. Artificial methane sinks. En: Reay DS, Hewitt CN, Smith KA, Grace J, editors. Greenhouse gas sinks. Wallingford, UK: CAB International. pp 184-200. https://doi.org/10.1079/9781845931896.01840


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem