Mostrar el registro sencillo del ítem

Aplicación de diseños estadísticos secuenciales en la identificación de fuentes nutricionales para Azotobacter chroococcum AC1.

dc.creatorMoreno, Andrés Eduardo
dc.creatorRojas, Daniel Fernando
dc.creatorBonilla, Ruth Rebeca
dc.date2011-11-23
dc.date.accessioned2020-08-04T20:35:27Z
dc.date.available2020-08-04T20:35:27Z
dc.identifierhttp://revista.corpoica.org.co/index.php/revista/article/view/226
dc.identifier10.21930/rcta.vol12_num2_art:226
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/4512
dc.descriptionThe mass multiplication of plant growth promoting bacteria is a fundamental aspect in the production of bioinoculants. In order to evaluate an experimental strategy that would identify nutritional factors that influence the growth of Azotobacter chroococcum AC1 strain, the sequential application of statistical designs (Placket-Burman design, 27-3 factorial design, steepest ascent method, and response surface analysis) was performed. Eleven nutritional sources: glucose, sucrose, glycerol, starch, monosodium glutamate, urea, commercial yeast, yeast extract, MgSO4·7H2O, K2HPO4·3H2O, and mineral solution were evaluated. Sequential statistical design application proved to be a reliable experimental strategy, allowing 9x109 cfu/mL production from an optimal ration between yeast extract, monosodium glutamate, glucose, K2HPO4·3H2O, MgSO4·7H2O, and mineral solution.  en-US
dc.descriptionLa multiplicación masiva de bacterias promotoras de crecimiento vegetal es un aspecto fundamental para la producción de bioinoculantes. Con el objetivo de evaluar una estrategia experimental que permitiera identificar factores nutricionales con influencia sobre la multiplicación de Azotobacter chroococcum AC1, se realizó la aplicación secuencial de diseños estadísticos (Placket-Burman, diseño factorial 27-3, máxima respuesta ascendente y análisis de superficie de respuesta). Se evaluaron once fuentes nutricionales: glucosa, sacarosa, glicerol, almidón, glutamato monosódico, urea, levadura comercial entera, extracto de levadura, MgSO4·7H2O, K2HPO4·3H2O y solución de microelementos. Los resultados evidenciaron que la aplicación en secuencia de diseños estadísticos demostró ser una estrategia confiable permitiendo una producción de células viables de 9x109 ufc/mL luego de 24 horas del proceso de multiplicación, empleando una combinación óptima estimada basada en extracto de levadura, glutamato monosódico, glucosa, K2HPO4·3H2O, MgSO4·7H2O y solución de micronutrientes. es-ES
dc.formatapplication/pdf
dc.languagespa
dc.publisherCorporación Colombiana de Investigación Agropecuaria (Agrosavia)es-ES
dc.relationhttp://revista.corpoica.org.co/index.php/revista/article/view/226/232
dc.sourceCiencia y Tecnología Agropecuaria; Vol. 12 No. 2 (2011); 151-158en-US
dc.sourceCiencia & Tecnología Agropecuaria; Vol. 12 Núm. 2 (2011); 151-158es-ES
dc.sourcerevista Corpoica Ciência e Tecnologia Agropecuária; v. 12 n. 2 (2011); 151-158pt-BR
dc.source2500-5308
dc.source0122-8706
dc.source10.21930/rcta.vol12-num2
dc.subjectAzotobacter chroococcumen-US
dc.subjectPlacket-Burman designen-US
dc.subjectfactorial designen-US
dc.subjectsteepest ascent methoden-US
dc.subjectresponse surface analysis.en-US
dc.subjectAzotobacter chroococcumes-ES
dc.subjectDiseño Plackett–Burmanes-ES
dc.subjectDiseño factorial fraccionadoes-ES
dc.subjectMáxima respuesta ascendentees-ES
dc.subjectSuperficie de respuestaes-ES
dc.titleSequential statistical design application in identification of Azotobacter chroococcum AC1 nutritional sourcesen-US
dc.titleAplicación de diseños estadísticos secuenciales en la identificación de fuentes nutricionales para Azotobacter chroococcum AC1.es-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.citationsAzotobacter chroococcum; Placket-Burman design; Factorial design; Steepest ascent method; Response surface analysis. Aktas N, Boyaci IH, Mutlu M, Tanyolac A. 2006. Optimization of lactose utilization in deproteinated whey by Kluyveromyces marxianus using response surface methodology (RSM). Bioresour Technol (97):2252- 2259. https://doi.org/10.1016/j.biortech.2005.10.039 Altaf M, Naveena BJ, Reddy G. 2007. Use of inexpensive nitrogen sources and starch for L(+) lactic acid production in anaerobic submerged fermentation. Bioresour Technol 98(3):498-503. https://doi.org/10.1016/j.biortech.2006.02.013 Becking JH. 2006. The Family Azotobacteraceae. Prokaryotes 6:759-783. https://doi.org/10.1007/0-387-30746-X_26 Bonilla R, Novo R. 2001. Generación de tecnologías para la utilización de la fijación no simbiótica de nitrógeno como alternativa de fertilización. Boletín Investigación Corpoica 5:40. Bonilla RR, Pedroza AM. 2003. Aislamiento, caracterización y producción semi-industrial de Azotobacter chroococcun y Azotobacter vinelandii. Boletín Técnico Corpoica: 7:16. Doyle M, Beuchat L, Montville T. 2001. Microbiología de los Alimentos. Fundamentos y fronteras. Zaragoza, España: Ediciones Acribia. Edens N, Reaves L, Bergana L, Reyzer I, O'Mara P, Baxter J, Snowden K. 2002. Yeast extract stimulates glucose metabolism and inhibits lipolysis in rat adipocytes in Vitro. Biochem Mol Actions Nutrients 132:1141-1148. https://doi.org/10.1093/jn/132.6.1141 Fenglerowa W. 1965. Simple method for counting Azotobacter in soil samples. Acta Microb Pol 14(21):203. Ferrer JR, Páez G, Arenas L, Chandler C, Mármol Z, Sandoval L. 2002. Cinética de la hidrólisis ácida de bagacillo de caña de Azúcar. Rev Fac Agron LUZ 19(1):23-33. Fisher K, Newton WE. 2002. Nitrogen fixation- a general overview. En: Jeffery L, editor. Nitrogen fixation at the millennium. Amsterdam: Elsevier. pp. 1-34. https://doi.org/10.1016/B978-044450965-9/50001-X Fuentes-Ramirez L, Caballero-Mellado J. 2005. Bacterial biofertilizers. En: Siddiqui ZA. editor. PGPR: biocontrol and biofertilization. Netherlands: Springer. pp. 143-172. https://doi.org/10.1007/1-4020-4152-7_5 Gao H, Gu WY. 2007. Optimization of polysaccharide and ergosterol production from Agaricus brasiliensis by fermentation process. Biochem Eng J 33(3): 202-210. https://doi.org/10.1016/j.bej.2006.10.022 Isar J, Agarwal L, Saran S, Saxena RK. 2006. A statistical method for enhancing the production of succinic acid from Escherichia coli under anaerobic conditions. Bioresour Technol (97):1443-1448. https://doi.org/10.1016/j.biortech.2005.07.014 Juarez B, Martinez-Toledo MV, Gonzalez-Lopez J. 2005. Growth of Azotobacter chroococcum in chemically defined media containing p-hydroxybenzoic acid and protocatechuic acid. Chemosphere 59:1361-1365. https://doi.org/10.1016/j.chemosphere.2004.11.037 Kennedy C, Rudnick P, Macdonald ML, Melton T. 2005. Genus III. Azotobacter Beijerinck. En: Brenner DJ, Krieg NR, Garrity GM, editors. Bergey's manual of systematic bacteriology. Vol. 2: The Proteobacteria. Part C: The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Baltimore, MD: Springer. pp. 384-402. Kızılkaya R. 2008. Yield response and nitrogen concentrations of spring wheat (Triticum aestivum) inoculated with Azotobacter chroococcum strains. Ecol Eng 33:150-156. https://doi.org/10.1016/j.ecoleng.2008.02.011 Myshkina VL, Nikolaeva DA, Makhina TK, Bonartsev AP, Bonartseva GA. 2008. Effect of growth conditions on the molecular weight of poly-3-hydroxybutyrate produced by Azotobacter chroococcum 7B. Appl Biochem Microbiol 44(5):482-486. https://doi.org/10.1134/S0003683808050050 Overmann J. 2006. Principles of enrichment, isolation, cultivation and preservation of prokaryotes. En: Prokaryotes. Vol. 1. New York: Springer. pp. 80-136. https://doi.org/10.1007/0-387-30741-9_5 Peña C, Trujillo-Roldán MA, Galindo E. 2000.Influence of dissolved oxygen tension and agitation speed on alginate production and its molecular weight in cultures of Azotobacter vinelandii. Enzym Microb Technol 27:390-398. https://doi.org/10.1016/S0141-0229(00)00221-0 Quagliano JC, Amarilla F, Fernandes EG, MataD, Miyazaki SS. 2001. Effect of simple and complex carbon sources, low temperature culture and complex carbon feeding policies on poly-3-hydroxybutyric acid (PHB) content and molecular weight (Mw) from Azotobacter chroococcum 6B. World J Microb Biotechnol 17:9-14. https://doi.org/10.1023/A:1016694718741 Remus R, Ruppel S, Jacob HJ, Hecht-Buchholz Ch, Merbach W. 2000. Colonization behaviour of two enterobacterial strains on cereals. Biol Fertil Soils 30:550-557. https://doi.org/10.1007/s003740050035 Ren J, Lin WT, Shen YJ, Wang JF, Luo XC, Xie MQ. 2008. Optimization of fermentation media for nitrite oxidizing bacteria using sequential statistical design. Bioresour Technol (99):7923-7927. https://doi.org/10.1016/j.biortech.2008.03.027 Rojas D, Garrido MF, Bonilla R. 2009. Estandarización de un medio de cultivo complejo para la multiplicación de la cepa C50 de Rhizobium sp. Rev Corpoica 10(1):70-80. https://doi.org/10.21930/rcta.vol10_num1_art:131 Ryu HW, Cho KS, Goodrich PR, Park C-H. 2008. Production of polyhydroxyalkanoates by Azotobacter vinelandii UWD using swine wastewater: effect of supplementing glucose, yeast extract, and inorganic salts. Biotechnol Bioproc Eng (13):651-658. https://doi.org/10.1007/s12257-008-0072-x Takahashi T, Fei YZS, Moriya J, Sumino H, Morimoto S, Yamaguchi N, Kanda T. 2006. Beneficial effect of brewers yeast extract on daily activity in a murine model of chronic fatigue syndrome. Adv Access Publ 3(1):109-115. https://doi.org/10.1093/ecam/nek012 Xu F, Tao WY, Cheng L, Guo LJ. 2006. Strain improvement and optimization of the media of taxol-producing fungus Fusarium maire. Biochem Eng J 31:67-73. https://doi.org/10.1016/j.bej.2006.05.0240


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem