Mostrar el registro sencillo del ítem

Mecanismos de acción de las rizobacterias promotoras del crecimiento vegetal.

dc.creatorCamelo, Mauricio
dc.creatorVera, Sulma Paola
dc.creatorBonilla, Ruth Rebeca
dc.date2011-11-23
dc.date.accessioned2020-08-04T20:35:27Z
dc.date.available2020-08-04T20:35:27Z
dc.identifierhttp://revista.corpoica.org.co/index.php/revista/article/view/227
dc.identifier10.21930/rcta.vol12_num2_art:227
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/4513
dc.descriptionThe population dynamics of the human race has led to the exploitation of natural resources in search of a way to meet the nutritional needs of the billions of people inhabiting the planet. This need has led to the use of high-efficiency materials in agriculture, plant varieties with shorter production cycles that are also resistant to pests and diseases, and chemicals that provide protection against biotic factors (pests and disease), additionally the nutrients required to grow plants. However, the strategies used in modern agriculture have led to negative environmental impacts that we have yet to fully understand. Groundwater contamination, eutrophication, increased greenhouse gases, and the accumulation of toxic substances in the food chain are some of the serious problems that have arisen worldwide due to the indiscriminate use of agrochemicals. As an alternative to the use of these substances, the use of rhizopheric bacteria has been proposed owing to its known action as plant growthpromoting bacteria (PGPB). These bacteria are able to stimulate plant growth directly and indirectly and have several complex mechanisms that interact with each other to establish beneficial relationships, especially with the roots of target plants. The study and understanding of PGPR have been the subjects of great importance in many studies at a global level. This review, therefore, aims to better understand the mechanisms of plant growth-promoting rhizobacteria on plant development and their role in nutrient cycling.  en-US
dc.descriptionLa dinámica poblacional de la especie humana ha llevado a que la explotación de los recursos naturales, en búsqueda de suplir las necesidades alimenticias de los miles de millones de personas que habitan el planeta. Esta necesidad ha llevado a la utilización de materiales de alta eficiencia en la agricultura, variedades vegetales resistentes a plagas y enfermedades con ciclos de producción más cortos, agroquímicos que surten las necesidades nutricionales y provean protección frente factores bióticos adversos (plagas y enfermedades). Sin embargo, estas estrategias utilizadas en la agricultura moderna han generado impactos ambientales negativos que aún no comprendemos. La contaminación de aguas freáticas, eutrofización, aumento de gases de invernadero y acumulación de sustancias toxicas en la cadena trófica, son algunos de los graves problemas que se presentan por el uso indiscriminado de agroquímicos. Como alternativa a la utilización de estas sustancias, se ha propuesto el uso de bacterias rizosféricas que tienen reconocida acción sobre el crecimiento y desarrollo vegetal (PGPR, por sus siglas en ingles). Estas bacterias son capaces de estimular el desarrollo de las plantas de manera directa e indirecta y poseen una serie de mecanismos complejos que interactúan entre sí para establecer relaciones benéficas, especialmente con las raíces de las plantas objetivo. El estudio y entendimiento de las PGPR han sido temas de gran importancia en muchas investigaciones a nivel mundial, por esta razón esta revisión tiene por objetivo hacer una revisión parcial para dar a conocer los mecanismos que poseen las rizobacterias promotoras del crecimiento vegetal en el desarrollo de las plantas, así como el papel que desempeñan en el ciclaje de nutrientes.  es-ES
dc.formatapplication/pdf
dc.languagespa
dc.publisherCorporación Colombiana de Investigación Agropecuaria (Agrosavia)es-ES
dc.relationhttp://revista.corpoica.org.co/index.php/revista/article/view/227/233
dc.sourceCiencia y Tecnología Agropecuaria; Vol. 12 No. 2 (2011); 159-166en-US
dc.sourceCiencia & Tecnología Agropecuaria; Vol. 12 Núm. 2 (2011); 159-166es-ES
dc.sourcerevista Corpoica Ciência e Tecnologia Agropecuária; v. 12 n. 2 (2011); 159-166pt-BR
dc.source2500-5308
dc.source0122-8706
dc.source10.21930/rcta.vol12-num2
dc.subjectNitrogenen-US
dc.subjectsiderophoresen-US
dc.subjectroot colonizationen-US
dc.subjectmicrobiology of soil.en-US
dc.subjectNitrógenoes-ES
dc.subjectSideróforoses-ES
dc.subjectColonización de raízes-ES
dc.subjectMicrobiología de sueloes-ES
dc.titleMechanisms of action of plant growth promoting rhizobacteriaen-US
dc.titleMecanismos de acción de las rizobacterias promotoras del crecimiento vegetal.es-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.citationsAdler JA. 1973. Method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli. J. Gen Microbiol 74:77-91. https://doi.org/10.1099/00221287-74-1-77 Ahmad F, Ahmad I, Khan MS. 2006. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 36:1-9. Ahn IP, Lee SW, Suh SC. 2007. Rhizobacteria-Induced Priming in Arabidopsis Is Dependent on Ethylene, Jasmonic Acid, and NPR1. Mol Plant Microbe Interact 20(7):759-768. https://doi.org/10.1094/MPMI-20-7-0759 Aizawa S, Aizawa C, Harwood S, Kadner RJ. 2000. Signaling Components in Bacterial Locomotion and Sensory Reception. Minireview. J. Bacteriol 182(6):1459-1471. https://doi.org/10.1128/JB.182.6.1459-1471.2000 Baca BE, Elmerich C. 2007. Microbial production of plant hormones. En: Elmerich C, Newton WE, editores. Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations. Dordrecht, Netherlands: Kluwer Academic Publishers. pp. 113-143. https://doi.org/10.1007/1-4020-3546-2_6 Benizri E, Baudoin E, Guckert A. 2001. Root colonization by inoculated plant growth-promoting rhizobacteria. Biocontrol Sci Technol 11:557- 574. https://doi.org/10.1080/09583150120076120 Bianciotto V, Andreotti S, Bonfante P, Parotto S. 2001. Mucoid mutants of the bibiocontrol strain Pseudomonas fluorescens CHA0 show increased ability in biofilm formation on mycorrhizal and nonmycorhizal carrot roots. Mol Plant Microbe Interact 14(2):255-260. https://doi.org/10.1094/MPMI.2001.14.2.255 Bianciotto V, Minerdi D, Perotto S, Bonfante P. 1996. Cellular interactions between arbuscular mycorhizal fungi and rhizosphere bacteria. Protoplasma 193:123-131. https://doi.org/10.1007/BF01276640 Blakeslee JJ, Ann Peer W, Murphy AS. 2005. MDR/PGP Auxin transport proteins and endocytic cycling. Plant Cell Monogr 1:159-176. https://doi.org/10.1007/7089_010 Boddey RM, Urquiaga S, Reis V, Dobereiner J. 1991. Biological nitrogen fixation associated with sugar cane. Plant Soil 137(1):111-117. https://doi.org/10.1007/BF02187441 Bonilla R, Morales G. 2005. Monibac: Un biofertilizante con base en cepas nativas de Azotobacter sp., para incrementar la productividad y sostenibilidad del algodonero. Innovación y Cambio Tecnológico Corpoica 4:30-34. Bottini R, Cassan F, Piccoli P. 2004. Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497-503. https://doi.org/10.1007/s00253-004-1696-1 Brisbane PG, Janik L, Tate M, Warren R. 1987. Revised structure for the phenazine antibiotic from Pseudomonas fluorescens 2-79 (NRRL B-1 5132). Antimicrobial Agents Chemotherapy 31:1967-1971. https://doi.org/10.1128/AAC.31.12.1967 Caballero T, Camelo M, Bonilla R, Martínez M. 2007. Determinación de actividad fosfato solubilizadora por bacterias aisladas a partir de suelos algodoneros en los departamentos del Cesar y Meta. Suelos Ecuat 37:94-100. Caiola MG, Al-Botta A, Del Gallo M. 2004. Localization of Azospirillum brasiliense Cd in inoculated tomato (Lycopersicon esculentum Mill.) roots. Ann Microbiol 54:365-380. Canavarro AM, Machado S. 2002. Sideróforos: resposta uma dos microorganismos. Quim Nova 25(6b): 1155-1164. https://doi.org/10.1590/S0100-40422002000700016 Cárdenas DM, Garrido MF, Bonilla R, Baldani VL. 2010. Aislamiento e identificación de cepas de Azospirillum sp. en pasto Guinea (Panicum maximum Jacq.) del Valle del Cesar [en línea]. Pastos y Forrajes 33(4): http://scielo.sld.cu/pdf/pyf/v33n3/pyf05310.pdf; consulta: junio de 2011. Chen WM, Laevens S, Lee TM, Coenye T, De Vos P, Mergeay M, Vandamme P. 2001. Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 51:1729-1735. https://doi.org/10.1099/00207713-51-5-1729 Compant S, Duffy B, Nowak J, Clement C, Barka EA. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 17(9):4951-4959. https://doi.org/10.1128/AEM.71.9.4951-4959.2005 De Vleesschauwer D, Cornelis P, Höfte M. 2006. Redox active pyocyanin secreted by Pseudomonas aeruginosa 7NSK2 triggers systemic resistance to Magnaporthe grisea but enhances Rhizoctonia solani susceptibility in rice. Mol Plant Microbe Interact 19(12):1406-1419. https://doi.org/10.1094/MPMI-19-1406 De Weert S, Vermeiren HI, Kulper I, Hendrickx I, Bloemberg G, Vanderleyden J, De Mot, Lugtenberg J. 2002. Flagella-driven chemotaxis towards exudates components is an important trait for tomato roor colonization by Pseudomonas fluorescens. Mol Plant Microbe Interact 15(11):1173-1180. https://doi.org/10.1094/MPMI.2002.15.11.1173 De Weger LA, Van Arendonk J, Recourt K, Van Der Hofstad G, Weissbeek P, Lugtemberg B. 1998. Siderophore-mediated uptake of Fe3+ by the plant growth-stimulating Pseudomonas putida Strain WCS358 and by other rhizosphere microorganisms. J. Bacteriol 170(10):4693-4698. https://doi.org/10.1128/JB.170.10.4693-4698.1988 Döbereiner J. 1992. History and new perspectives of diazotrophs in association with nonleguminous plants. Symbiosis 13:1-13. El Sorra E, Idris Domingo J, Iglesias MT, Rainer B. 2007. Tryptophan- dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant Microbe Interact 20(6):619-626. https://doi.org/10.1094/MPMI-20-6-0619 Fuentes-Ramírez LE, Caballero-Mellado J. 2005. Bacterial fertilizers. En: Siddiqui ZA, editor. PGPR: biocontrol and biofertilization. Dordrecht, Springer. pp. 143-172.Fukuda H, Ogawa T, Tanase S. 1993. Ethylene production by microorganisms. Adv Microbial Physiol 35:275-306. https://doi.org/10.1007/1-4020-4152-7_5 Garcia de Salamone I, Hynes R, Nelson L. 2005. Role of cytokinins in plant growth promotion by rhizosphere bacteria. En: Siddiqui ZA, editor. PGPR: biocontrol and biofertilization. Dordrecht, Springer. Pp 173-195. https://doi.org/10.1007/1-4020-4152-7_6 Garrido MF, Cárdenas DM, Bonilla R, Baldani VL. 2010. Efecto de los factores edafoclimaticos y la especie de pasto en la diversidad de bacterias diazotroficas. Pastos y Forrajes 33(4):1-12. Gil-Jae J, Young-Mog K, In-Jung L, Kyung-Sik S, In-Koo R. 2004. Growth promotion of red pepper plug seedlings and the production of gibberellins by Bacillus cereus, Bacillus macroides and Bacillus pumilus. Biotechnol Lett 26:487-491. https://doi.org/10.1023/B:BILE.0000019555.87121.34 Inzé D, Follin A, Van Lijsebettens M, Simoens C, Genetello C, Van Montagu M, Schell J. 1984. Genetic analysis of the individual T-DNA of Agrobacterium tumefaciens, further evidence that two genes are involved in indole-3-acetic acid synthesis. Mol Gen Genet 194:265-274. https://doi.org/10.1007/BF00383526 Knoester M, Pieterse CMJ, Bol FJ, Van Loon CL. 1999. Systemic resistance in Arabidopsis induced by rhizobacteria requires ethylene-dependent signaling at the site of application. Mol Plant Microbe Interact 12(8):720-727. https://doi.org/10.1094/MPMI.1999.12.8.720 Landa B, Mavrodi O, Raaijmakers M, McSpadden B, Thomashow L, Weller D. 2002. Differential ability of genotypes of 2,4-diacetylphloroglucinol- producing Pseudomonas fluorescens strains to colonize the roots of pea plants. Appl Environ Microbiol 68(7):3226-3237. https://doi.org/10.1128/AEM.68.7.3226-3237.2002 Law A, Aitken M. 2005. Continuous-flow capillary assay for measuring bacterial chemotaxis. Appl Environ Microbiol 71(6):3137-3143. https://doi.org/10.1128/AEM.71.6.3137-3143.2005 Leisinger T, Margraff R. 1979. Secondary metabolites of the fluorescent pseudomonads. Microbiol Rev 43(3):422-442. https://doi.org/10.1128/MMBR.43.3.422-442.1979 Lennon A, Neuenschwander U, Ribas-Carbo M, Giles L, Ryals J, Siedow J. 1997. The effects of salicylic acid and Tobacco mosaic virus infection on the alternative oxidase of tobacco. Plant Physiol 115:783-791. https://doi.org/10.1104/pp.115.2.783 Lugtenberg BJJ, Chin-A-Woeng TFC, Bloemberg-Guido V. 2002. Microbe-plant interactions: principles and mechanisms. Antonie Leeuwenhoek 81:373-383. https://doi.org/10.1023/A:1020596903142 Maki N, Gestwicki J, Lake E, Kiessling L, Adler J. 2000. Motility and chemotaxis of filamentous cells of Escherichia coli. J Bacteriol 182(15):4337-4342. https://doi.org/10.1128/JB.182.15.4337-4342.2000 Mani BM, Traux JPM. 1998. Salicylic acid and systemic acquired resistance to pathogen attack. Ann Bot 82:535-540. https://doi.org/10.1006/anbo.1998.0726 Matheron M. 2001. Modes of action for plant disease management chemistrie. En: The University of Arizona, http://ag.arizona.edu/crops/diseases/papers/dischemistry.html; consulta: Julio de 2011. Mavrodi OV, Mavrodi D, Park A, Weller D, Thomashow L. 2006. The role of dsbA in colonization of the wheat rhizosphere by Pseudomonas fluorescens Q8r1-96. Microbiol 152:863-872. https://doi.org/10.1099/mic.0.28545-0 McCarter L. 2004. Dual Flagellar systems enable motility under different circumstances. J Mol Microbiol Biotechnol 7:18-29. https://doi.org/10.1159/000077866 Mercado J, Koem M, Van Der Drift M, Olsson P, Thomas J, Van Loon L, Bakker P. 2001. Analysis of the pmsCEAB gene cluster Involved in biosynthesis of salicylic acid and the siderophore pseudomonine in the biocontrol strain Pseudomonas fluorescens WCS374. J Bacteriol 183(6):1909-1920. https://doi.org/10.1128/JB.183.6.1909-1920.2001 Obando DM, Burgos L, Rivera D, Garrido MF, Baldani VL, Bonilla R. 2010. Caracterización de bacterias diazotróficas asimbióticas asociadas al eucalipto (Eukalyptus sp.) en Codazzi, Cesar (Colombia). Acta Biol Colomb 15(3):107-120. Rao M, Lee H, Creelman R, Mullet J, Davirs K. 2000. Jasmonic acid signaling modulates ozone-induced hypersensitive cell death. Plant Cell 12:1633-1646. https://doi.org/10.1105/tpc.12.9.1633 Schröeder G, Waffenschmidt S, Weiler EW, Schröeder J. 1984. The T-region of Ti plasmids codes for an enzyme synthesizing indole-3- acetic acid. Eur J Biochem 138:387-391. https://doi.org/10.1111/j.1432-1033.1984.tb07927.x Shoebitz M, Ribaudo CM, Pardo M, Cantorec M, Ciampi LJA, Curá B. 2008. Plant growth promoting properties of a strain of Enterobacter ludwigii isolated from Lolium perenne rhizosphere. Soil Biol Biochem 12(13):1-7. Shoresh M, Yedidia I, Chet I. 2005. Involvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T20. Phytopathol 95(1):66-77. https://doi.org/10.1094/PHYTO-95-0076 Simons M. Van Der Bij A, Brand J, De Weger L, Wijffelman C, Lugtenberg B. 1996. Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol Plant Microbe Interact 9:600-607. https://doi.org/10.1094/MPMI-9-0600 Thomashow LS, Reeves S, Thomashow MF. 1984. Crown gall oncogenesis, evidence that a T-DNA gene from the Agrobacterium Ti plasmid pTiA6 encodes an enzyme that catalyzes synthesis of indoleacetic acid. Proc Natl Acad Sci USA 81:5071-5075. https://doi.org/10.1073/pnas.81.16.5071 Tsavkelova EA, Klimova SY, Cherdyntseva TA, Netrusov AI. 2006. Microbial producers of plant growth stimulators and their practical use: a review. Appl Biochem Microbiol 42(2):117-126. https://doi.org/10.1134/S0003683806020013 Voinnet O. 2005. RNA silencing compared with innate immunity. Nature Rev Gen 6:206-220. https://doi.org/10.1038/nrg1555 Weert S, Kuiper I, Lagendijk EL, Gerda E, Lamers M, Ben J, Lugtenberg J. 2003. Role of chemotaxis toward fusaric acid in colonization of hyphae of Fusarium oxysporum f. sp. radicis-lycopersici by Pseudomonas fluorescens WCS365. Mol Plant Microbe Interact 17(11):1185-1191. https://doi.org/10.1094/MPMI.2004.17.11.1185 Whippis J. 2001. Microbial interactions ADN biocontrol in the rizosphere. J Exp Bot 52:487-511. https://doi.org/10.1093/jxb/52.suppl_1.487 Wildermuth M, Dewdney J, Wu G, Ausubel F. 2002. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414:562-565. https://doi.org/10.1038/351071080


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem