Mostrar el registro sencillo del ítem
Effect of plant growth-promoting rhizobacteria (PGPR) associated to Pennisetum clandestinum in the altiplano cundiboyacense
Efecto de bacterias promotoras de crecimiento vegetal (PGPR) asociadas a Pennisetum clandestinum en el altiplano cundiboyacense
dc.creator | Criollo, Paola Jimena | |
dc.creator | Obando, Melissa | |
dc.creator | Sánchez, Leonardo | |
dc.creator | Bonilla, Ruth | |
dc.date | 2013-01-17 | |
dc.date.accessioned | 2020-08-04T20:35:33Z | |
dc.date.available | 2020-08-04T20:35:33Z | |
dc.identifier | http://revista.corpoica.org.co/index.php/revista/article/view/254 | |
dc.identifier | 10.21930/rcta.vol13_num2_art:254 | |
dc.identifier.uri | http://test.repositoriodigital.com:8080/handle/123456789/4535 | |
dc.description | Pennisetum clandestinum (kikuyo) is a common pasture in the altiplano cundiboyacense silvopastoral systems, which possesses high nutritional value. Therefore, studies to improve the production process in both economic and environmental terms are very important. The role of inoculation with plant growthpromoting bacteria was evaluated on the growth of kikuyu grass. The 4K and 5B strains were identified, through amplification and analysis of their 16S rDNA, as members of the Stenotrophomonas and Pseudomonas genera, respectively. They were characterized in vitro for their efficiency of biological nitrogen fixation, production of indole compounds, and phosphate solubilization. Four treatments were evaluated under greenhouse conditions. Furthermore, the biomass was evaluated at different stages of the plant (70, 100 and 130 days). The 4K strain demonstrated a root dry weight that increased by 50% at 70 and 100 days and the 5B strain showed a statistically significant behavior for plant and root dry weight with an increase of 50% at 130 days. The most important effect was presented after 100 d where treatments, TQ, TB1 and TB2, exceeded more 80% to absolute control in the fresh weight of the air. These results showed that inoculation with PGPR represents a biotechnological alternative to promote growth of P. clandestinum, as we observed relevant effects on biomass production 100 days after planting. | en-US |
dc.description | Pennisetum clandestinum (kikuyo) es una pastura común en los sistemas silvopastoriles del altiplano cundiboyacense, con altas propiedades nutritivas. Por tanto estudios que permitan mejorar el proceso de producción en términos económicos y ambientales reviste gran importancia. En este estudio se evaluó el papel de la inoculación con bacterias promotoras de crecimiento vegetal (PGPR) sobre el crecimiento de pasto kikuyo. Las cepas 4K y 5B fueron identificadas mediante amplificación y análisis del 16S rADN, como Stenotrophomona ssp. y Pseudomona ssp., respectivamente, caracterizadas por su eficiencia in vitro en la fijación biológica de nitrógeno, producción de compuestos indólicos y solubilización de fosfatos. Se evaluaron las cepas en condiciones de invernadero en tres tiempos de crecimiento de la planta (70, 100 y 130 días). Se evidenció que la cepa 4K incrementó el peso seco radicular de la planta en 50% a los 70 y 100 días, mientras que la cepa 5B mostró un comportamiento similar en el peso seco aéreo y radicular con aumentos de hasta el 50% a los 130 d. El efecto más importante se presentó después de 100 d donde los tratamientos TQ, TB1 y TB2, superaron en más del 80% al testigo absoluto en el peso fresco de la parte aérea. Estos resultados demostraron que la inoculación de PGPR representa una alternativa biotecnológica para promover el crecimiento de P. clandestinum, con efectos relevantes en producción de biomasa 100 días después de la siembra (dds). | es-ES |
dc.format | application/pdf | |
dc.language | spa | |
dc.publisher | Corporación Colombiana de Investigación Agropecuaria (Agrosavia) | es-ES |
dc.relation | http://revista.corpoica.org.co/index.php/revista/article/view/254/257 | |
dc.source | Ciencia y Tecnología Agropecuaria; Vol. 13 No. 2 (2012); 189-195 | en-US |
dc.source | Ciencia & Tecnología Agropecuaria; Vol. 13 Núm. 2 (2012); 189-195 | es-ES |
dc.source | revista Corpoica Ciência e Tecnologia Agropecuária; v. 13 n. 2 (2012); 189-195 | pt-BR |
dc.source | 2500-5308 | |
dc.source | 0122-8706 | |
dc.source | 10.21930/rcta.vol13-num2 | |
dc.subject | silvopastoral system | en-US |
dc.subject | grasses | en-US |
dc.subject | biological nitrogen fixation | en-US |
dc.subject | indolic compounds | en-US |
dc.subject | phosphate solubilization | en-US |
dc.subject | Sistemas Silvopastoriles | es-ES |
dc.subject | Gramíneas | es-ES |
dc.subject | Fijación Biológica De Nitrógeno | es-ES |
dc.subject | Compuestos Indólicos | es-ES |
dc.subject | Solubilización De Fosfato | es-ES |
dc.title | Effect of plant growth-promoting rhizobacteria (PGPR) associated to Pennisetum clandestinum in the altiplano cundiboyacense | en-US |
dc.title | Efecto de bacterias promotoras de crecimiento vegetal (PGPR) asociadas a Pennisetum clandestinum en el altiplano cundiboyacense | es-ES |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.citations | Altschul S, Gish W, Miller W, Myers W, Lipman D. 1990.Basic local alignment search tool. J Mol Biol 215 (3):403-410. https://doi.org/10.1016/S0022-2836(05)80360-2 Andrews M, James EK, Cummings SP, Zavalin AA, Vinogradova LV, McKenzie BA. 2003. Use of nitrogen fixing bacteria inoculants as a substitute for nitrogen fertiliser for dryland graminaceous crops: progress made, mechanisms of action and future potential. Symbiosis 35:209-229. Asghar H, Zahir Z, Arshad M. 2004. Screening rhizobacteria for improving the growth, yield, and oil content of canola (Brassica napus L.). Aust J Agric Res 55(2):187-194. https://doi.org/10.1071/AR03112 AOAC, Association of Official Agriculture Chemists. 2005. Official methods of analysis 988.05. 18a ed. Washington DC. Ashelford K, Chuzhanova N, Fry JA. 2005. At least one in twenty 16S rRNA sequence records currently held in public repositories estimated to contain substantial anomalies Appl Environ Microbiol (12):7724-7736. https://doi.org/10.1128/AEM.71.12.7724-7736.2005 Bashan Y, Holguin G. 1997. Azospirillum/plant relationships: environmental and physiological advances (1990-1996). Can J Microb 43:103-121. https://doi.org/10.1139/m97-015 Bashan Y, Salazar B, Moreno M, Lopez R, Linderman R. 2012. Restoration of eroded soil in the Sonoran Desert with native leguminous trees using plant growth-promoting microorganisms and limited amounts of compost and water. J Environ Manag 102:26-36. https://doi.org/10.1016/j.jenvman.2011.12.032 Berg G. 2009. Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotech 84:11-18. https://doi.org/10.1007/s00253-009-2092-7 Bertani G. 1952. Studies on Lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62:293-300. https://doi.org/10.1128/JB.62.3.293-300.1951 Bertani G. 2004. Lysogeny at mid-twentieth century: P1, P2, and other experimental systems. J. Bacteriol 186:595-600. https://doi.org/10.1128/JB.186.3.595-600.2004 Bonilla R, Roncallo R, Baldani V, Barros J, Murillo J, Cardenas D, Castro E, Garrido M, Rivera M. 2010. Producción de fertilizantes biológicos a partir de microorganismos nativos del género Azospirillum sp. Ciencia y tecnología para la competitividad del sector agropecuario. Bogotá: Ministerio de Agricultura y Desarrollo Rural. pp. 140-141. Bray B, Kurtz L. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci 59:39-45. https://doi.org/10.1097/00010694-194501000-00006 Carcaño-Montiel MG, Ferrera-Cerrato R, Pérez-Moreno J, Molina- Galán JD, Bashan Y. 2006. Actividad nitrogenasa, producción de fitohormonas, sideróforos y antibiosis en cepas de Azospirillum y Klebsiella aisladas de maíz y teocintle. Terra Latinoam 24(4):493- 502. Cárdenas D, Garrido MF, Bonilla M, Baldani VL. 2010. Aislamiento e identificación de cepas de Azospirillum sp. en pasto guinea (Panicum maximum Jacq.) del Valle del Cesar. Pastos y Forrajes 33(3):285-300. Carreño R, Campos N, Elmerich C, Baca B. 2000. Physiological evidence for differently regulated tryptophan-dependent pathways for índole- 3-acetic acid synthesis in Azospirillum brasilense. Mol Gen Genet 264:521-30. https://doi.org/10.1007/s004380000340 Cassán F, Perrig D, Sgroy V, Masciarelli O, Penna C, Luna V. 2009. Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur J Soil Biol 45:28-35. https://doi.org/10.1016/j.ejsobi.2008.08.005 Chowdhury S, Schmid M, Hartmann A, Kumar A. 2007. Identification of diazotrophs in the culturable bacterial community associated with roots of Lasiurus sindicus, a perennial grass of thar desert, India. Microb Ecol 54:82-90. Díaz K, Valiente C, Martinez M, Castillo M, Santafuetes E. 2008. Rootpromoting rhizobacteria in Eucalyptus globulus cuttings. World J Microbiol Biotechnol 25(5):867-873. https://doi.org/10.1007/s00248-006-9174-1 Díaz K, Araya T, Valenzuela S, Sossa K, Martinez M, Peña-Cortés H, Santafuentes E. 2012. Production of phytohormones, siderophores and population fluctuation of two root-promoting rhizobacteria in Eucalyptus globulus cuttings. World J Microbiol Biotechnol 28(5):2003- 2014. https://doi.org/10.1007/s11274-012-1003-8 Doty SL, Oakely B, Xin G, Kang JW, Singleton G, Khan Z, Vajzovic A, Staley JT. 2009. Diazotrophic endophytes of native black cottonwood and willow. Symbiosis 47:23-33. https://doi.org/10.1007/BF03179967 Eckert B, Baller O, Kirchhof G, Halbritter A, Stoffels M, Hartmann A. 2001. Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus. Intl J Syst Evol Mcrobiol 51:17-26. https://doi.org/10.1099/00207713-51-1-17 Egamberdiyeva D, Oflich G. 2004. Effect of plant growth-promoting bacteria on growth and nutrient uptake of cotton and pea in a semiarid region of Uzbekistan. J Arid Environ 56:293-301. https://doi.org/10.1016/S0140-1963(03)00050-8 Egamberdiyeva D. 2007. The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Uzbekistan Appl Soil Ecol 56:184-189. https://doi.org/10.1016/j.apsoil.2007.02.005 Esqueda MH, Carrillo RL, Sosa M, Melgoza A, Royo MH, Jiménez J. 2002. Emergencia y sobrevivencia de gramíneas inoculadas con biofertilizantes en condiciones de invernadero. Téc Pecu Méx 43(3):459-475. Fiske C, Subbarow Y. 1925. The Colorimetric determination of phosphorus. J Biol Chem 66:375-400. Garrido MF, Cárdenas D, Bonilla R, Baldani V. 2010. Efecto de los factores edafoclimáticos y la especie de pasto en la diversidad de bacterias diazotróficas. Pastos y Forrajes 33(4):1-7. Hassen AI, Labuschagne N. 2010. Root colonization and growth enhancement in wheat and tomato by rhizobacteria isolated from the rhizoplane of grasses. World J Microbiol Biotechnol 26:1837-1846. https://doi.org/10.1007/s11274-010-0365-z Idris A, Labuschagne N, Korsten L. 2009. Efficacy of rhizobacteria for growth promotion in sorghum under greenhouse conditions and selected modes of action studies. J Agric Sci 147:17-30. https://doi.org/10.1017/S0021859608008174 James E. 2000. Nitrogen fixation in endophytic and associative symbiosis. Field Crops Res 65:197-209. Kloepper JW, Lifshitz R, Zablotowicz RM. 1989. Free-living bacterial inocula for enhancing crop productivity. Trends Biotecnol 7:39-49. https://doi.org/10.1016/S0378-4290(99)00087-8 Lugtenberg B, Kamilova F. 2009. Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541-556. https://doi.org/10.1146/annurev.micro.62.081307.162918 Marais JP, Figenschou DL, de Figueredo M.1992. Effect of nutrient calcium on the cell wall composition and digestibility of kikuyu grass (Pennisetum clandestinum Hochst). Afr J Range For Sci 9:72-75. https://doi.org/10.1080/02566702.1992.9648302 Mehnaz S, Lazarovits G. 2006. Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans, and Azospirillum lipoferum on corn plant growth under greenhouse conditions. Microb Ecol 51:326-335. https://doi.org/10.1007/s00248-006-9039-7 Obando M, Burgos L, Rivera D, Garrido M, Baldani VL, Bonilla R. 2010. Caracterización de bacterias diazotróficas asimbióticas asociadas al eucalipto (Eucalyptus sp.) en Codazzi, Cesar. Acta Biol Colomb 15(3):105-120. Okon Y. 2005. PGPR - technology cases of application and futureprospects. En: Hartmann A, Schmid M, Wenzel W, Hisinger L, editores. 2004. Rhizosphere-perspectives and Challenges-a Tribute to Lorenz Hiltner. Munich, Alemania. pp. 273-274. Rajkumar M, Nagendran R, Jae K, Hyu W, Zoo S. 2006. Influence of plant growth promoting bacteria and Cr6+ on the growth of Indian mustard. Chemosphere 62:741-748. https://doi.org/10.1016/j.chemosphere.2005.04.117 Rodríguez H, Fraga R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotech Adv 17:319-339. https://doi.org/10.1016/S0734-9750(99)00014-2 Sevilla M, Gunapala N, Burris RH, Kennedy C. 2001. Enhancement of growth and N content in sugarcane plants inoculated with Acetobacter diazotrophicus. Mol. Plant-Microbe Interact 14:358-366. https://doi.org/10.1094/MPMI.2001.14.3.358 Shokri D, Emtiazi G. 2010. indole-3-acetic acid (iaa) production in symbiotic and non-symbiotic nitrogen-fixing bacteria and its optimization by taguchi design. Curr Microbiol 61(3):217-225. https://doi.org/10.1007/s00284-010-9600-y Sidari M, Panuccio MR, Muscolo A. 2004. Influence of acidity on growth and biochemistry of Pennisetum clandestinum. Biol Plant 48(1):133-136. https://doi.org/10.1023/B:BIOP.0000024290.38546.8a Sundara R, Shinha M. 1963.Organis phosphate solubilizers in soil. Soil Sci Plant Nutr 9(2):45-49. Taulé C, Mareque C, Barlocco C, Hackembruch F, Reis V, Sicardi V, Battistoni F. 2012. The contribution of nitrogen fixation to sugarcane (Saccharum officinarum L.), and the identification and characterization of part of the associated diazotrophic bacterial community. Plant Soil 356:35-49. https://doi.org/10.1007/s11104-011-1023-4 Vassilev N, Medina A, Azcon R, Vassileva M. 2006. Microbial solubilization of rock phosphate on media containing agro-industrial wastes and effect of the resulting products on plant growth and P uptake. Plant and Soil 287(1-2): 77-84 https://doi.org/10.1007/s11104-006-9054-y | 0 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Agrosavia Revistas [263]