Mostrar el registro sencillo del ítem

Desarrollo y evaluación de un medio de cultivo alternativo para la multiplicación de Azospirillum brasilense C16 mediante diseños estadísticos secuenciados

dc.creatorMoreno-Galván, Andrés
dc.creatorRojas-Tapias, Daniel
dc.creatorBonilla, Ruth
dc.date2013-01-17
dc.date.accessioned2020-08-04T20:35:33Z
dc.date.available2020-08-04T20:35:33Z
dc.identifierhttp://revista.corpoica.org.co/index.php/revista/article/view/256
dc.identifier10.21930/rcta.vol13_num2_art:256
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/4537
dc.descriptionFor mass plant growth-promoting inoculant production, a high-yield culture medium is fundamental. Sequential application of statistical designs was used to optimize Azospirillum brasilense C16 biomass production. Six nutritional (glycerol, glutamate, mannitol, citric acid, yeast extract and K2HPO4 3H2O) and three mineral sources (MgSO4 7H2O, FeCl3 and NaCl) were evaluated using five statistical experiments Placket-Burman, factorial design, steepest ascent, response surface analysis, and mineral screening. The optimum medium composition (g L-1) was as follows: 28.33 glutamate, 2.92 yeast extract, 1.34 K2HPO4 3H2O, 0.5 MgSO4 7H2O and 0.02 FeCl3. After 24 hours of incubation, protein (32.04 μg) and dry biomass (1.51 g L-1) were 1.72 and 1.68 times higher than in conventional growth medium.  en-US
dc.descriptionPara la producción masiva de inoculantes basados en bacterias promotoras de crecimiento vegetal (PGPR), es fundamental un medio de cultivo de alto rendimiento. La aplicación secuenciada de diseños estadísticos fue usada para optimizar la producción de biomasa de Azospirillum brasilense C16, seis fuentes nutricionales (glicerol, glutamato, manitol, acido cítrico, extracto de levadura y K2HPO4 3H2O) y tres fuentes minerales (MgSO4 7H2O, FeCl3 y NaCl) fueron evaluadas mediante cinco experimentos estadísticos - Placket-Burman, factorial fraccionado, diseño de paso ascendente, análisis de superficie de respuesta y screening mineral, para tal efecto. La composición optimizada del medio (g L-1) fue: 28,33 glutamato, 2,92 extracto de levadura, 1,34 K2HPO4 3H2O, 0,5 MgSO4 7H2O y 0,02 FeCl3, la cual luego de 24 h de incubación permitió producir una cantidad de proteína (32,04 μg) y biomasa seca (1,51 g L-1) del 1,72 y 1,68 veces más alta, respectivamente, en relación al medio de cultivo convencional.   es-ES
dc.formatapplication/pdf
dc.languagespa
dc.publisherCorporación Colombiana de Investigación Agropecuaria (Agrosavia)es-ES
dc.relationhttp://revista.corpoica.org.co/index.php/revista/article/view/256/259
dc.sourceCiencia y Tecnología Agropecuaria; Vol. 13 No. 2 (2012); 201-206en-US
dc.sourceCiencia & Tecnología Agropecuaria; Vol. 13 Núm. 2 (2012); 201-206es-ES
dc.sourcerevista Corpoica Ciência e Tecnologia Agropecuária; v. 13 n. 2 (2012); 201-206pt-BR
dc.source2500-5308
dc.source0122-8706
dc.source10.21930/rcta.vol13-num2
dc.subjectculture medium optimizationen-US
dc.subjectfactorial designsen-US
dc.subjectculture medium designen-US
dc.subjectbioinoculant productionen-US
dc.subjectOptimización De Medio De Cultivoes-ES
dc.subjectDiseños Factorialeses-ES
dc.subjectDiseño De Medio De Cultivoes-ES
dc.subjectProducción De Bioinoculanteses-ES
dc.titleDevelopment and evaluation of an alternative culture medium for mass cultivation of Azospirillum brasilense C16 using sequential statistical designsen-US
dc.titleDesarrollo y evaluación de un medio de cultivo alternativo para la multiplicación de Azospirillum brasilense C16 mediante diseños estadísticos secuenciadoses-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.citationsArzanesh MH, Alikhani HA, Khavazi K, Rahimian HA, Miransari M. 2011. Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress. World J Microbiol Biotechnol 27:197-205. https://doi.org/10.1007/s11274-010-0444-1 Baldani JI, Krieg NR, Baldani VLD, Hartmann A, Döbereiner J. 2005. Genus II. Azospirillum. In: Brenner DJ, Krieg NR, Garrity GM, editors. Bergey's manual of systematic bacteriology. Vol II: The Proteobacteria. Part C: The Alpha, Beta, Delta, and Epsilon proteobacteria. 2nd ed. New York: Springer. pp. 7-26. Bashan Y, de-Bashan LE. 2010. How the plant growth-promoting bacterium Azospirillum promotes plant growth-a critical assessment. Adv Agron 108:77-136. https://doi.org/10.1016/S0065-2113(10)08002-8 Bashan Y, Trejo A, de-Bashan LE. 2011. Development of two culture media for mass cultivation of Azospirillum spp. and for production of inoculants to enhance plant growth. Biol Fertil Soil 47:963-969. https://doi.org/10.1007/s00374-011-0555-3 Box G, Behnken D. 1960. Some new three level designs for the study of quantitative variables. Technometrics 2:455-475. https://doi.org/10.1080/00401706.1960.10489912 Bradford M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-254. https://doi.org/10.1016/0003-2697(76)90527-3 Cárdenas DM, Garrido MF, Bonilla R, Baldani VL. 2010. Isolation and identification of Azospirillum sp. in Guinea grass (Panicum maximum Jacq.) of the Valle del Cesar. Pasto Forraje 33:285-300. Díaz-Zorita M, Fernández-Canigia MV. 2009. Field performance of a liquid formulation of Azospirillum brasilense on dryland wheat productivity. Eur J Soil Biol 45:3-11. https://doi.org/10.1016/j.ejsobi.2008.07.001 Dobbelaere S, Okon Y. 2007. The plant growth promoting effect and plant responses. In: Elmerich, C, Newton, WE, editors. Associative and endophytic nitrogen-fixing bacteria and Cyanobacterial associations. Dordrecht, The Netherlands Kluwer Academic Publishers. pp. 1-26. Hartmann A, Bashan Y. 2009. Ecology and application of Azospirillum and other plant growth-promoting bacteria (PGPB)-special issue. Eur J Soil Biol 45:1-2. https://doi.org/10.1016/j.ejsobi.2008.11.004 Liu C, Liu Y, Liao W, Wen Z, Chen S. 2003. Application of statisticallybased experimental designs for the optimization of nisin production from whey. Biotechnol Lett 25:877-882. https://doi.org/10.1023/A:1024009027255 Mendes AS, de Carvalho JE, Duarte M, Durán N, Bruns RE. 2001. Factorial design and response surface optimization of crude violacein for Chromobacterium violaceum production. Biotechnol Lett 23:1963-1969. https://doi.org/10.1023/A:1013734315525 Peña C, Campos N, Galindo E. 1997. Changes in alginate molecular mass distributions, broth viscosity and morphology of Azotobacter vinelandii cultured in shake flasks. Appl Microbiol Biotechnol 48:510-515. https://doi.org/10.1007/s002530051088 Plackett R, Burman J. 1946. The design of optimum multifactorial experiments. Biometrika 33:305-325. https://doi.org/10.1093/biomet/33.4.305 Ren J, Lin WT, Shen YJ, Wang JF, Luo XC, Xie MQ. 2008. Optimization of fermentation media for nitrite oxidizing bacteria using sequential statistical design. Bioresour Technol 99:7923-7927. https://doi.org/10.1016/j.biortech.2008.03.027 Spaepen S, Vanderleyden J, Remans R. 2007. Indole-3-acetic acid in microbial and microorganism-plant signalling. FEMS Microbiol Rev 31:425-448. https://doi.org/10.1111/j.1574-6976.2007.00072.x Wang FQ, Gao CJ, Yang CY, Xu P. 2007. Optimization of an ethanol production medium in very high gravity fermentation. Biotechnol Lett 29:233-236. https://doi.org/10.1007/s10529-006-9220-60


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem