Mostrar el registro sencillo del ítem
Application of a method of analysis of remote sensing data obtained by targeting the estimated productivity in cane for quantifying panela NDVI (normalized difference vegetation index)
Aplicación de una metodología de análisis de datos obtenidos por percepción remota orientados a la estimación de la productividad de caña para panela al cuantificar el NDVI (índice de vegetación de diferencia normalizada)
dc.creator | Rueda Calier, Fabio | |
dc.creator | Peñaranda Mallungo, Luis Alfonso | |
dc.creator | Velásquez Vargas, Wilmer Leonardo | |
dc.creator | Díaz Báez, Sergio Antonio | |
dc.date | 2015-12-30 | |
dc.date.accessioned | 2020-08-04T20:35:40Z | |
dc.date.available | 2020-08-04T20:35:40Z | |
dc.identifier | http://revista.corpoica.org.co/index.php/revista/article/view/377 | |
dc.identifier | 10.21930/rcta.vol16_num1_art:377 | |
dc.identifier.uri | http://test.repositoriodigital.com:8080/handle/123456789/4571 | |
dc.description | The productivity estimation sugar cane is very important for Colombian economy. The Net Primary Production (NPP) model is applied on present investigation from Kumar & Monteith to regional scale. Analyzing spatiotemporal with geomantic techniques and edaphoclimatic environment characterization. Field surveys were conducted too, to acquire physiological information of plants evaluated and soil conditions of the plantation under study. The data acquired was input in ArcGIS10.1 software, to make processing these.A series thematic map was resulted from data processing from spatiotemporal distribution of plantation soil characteristics and biophysical characteristics. The variables fPAR, PAR, EUR was calculate from Kumar & Monteith efficiency model. Remote sensing and mathematic models related and fraction absorbed photosynthetically active radiation derivates from Normalized Difference Vegetation Index (NDVI) and incident photosynthetically active adiation in land sensors recorded was calculated. Chemical and physical properties in laboratory tests were realized to soil, for relation knowledge between edaphoclimatic conditions and biophysical variables related with the sugar cane biomass gainer for Panela production. The information integrated from Geographic Information System (GIS) and edaphic data and climatic data in country recorded, shows the behavior of the plantation as it develops. | en-US |
dc.description | La estimación de la productividad en caña de azúcar resulta de gran importancia para la economía colombiana. En el presente trabajo, se aplica el modelo de Productividad Primaria Neta (PPN) a escala regional de Kumar y Monteith. Se hacen análisis espacio-temporales con técnicas de geomática y caracterización edafoclimáticas del entorno. También, se realizaron monitoreos de campo, para adquirir la información fisiológica de las plantas evaluadas y las condiciones edáficas de la plantación objeto de estudio. Los datos colectados fueron analizados en el software ArcGIS 10.1. Como resultado, se obtuvo una serie de mapas temáticos de la distribución espacio-temporal de las características del suelo y biofísicas de la plantación. Se calcularon las variables fPAR, PAR, EUR de la ecuación del modelo, mediante percepción remota y modelos matemáticos relacionados a través del índice de vegetación de diferencia normalizada (por su sigla en inglés, NDVI) y radiación fotosintética incidente registrada por el sensor en tierra. Esta información se validó mediante pruebas de laboratorio de las propiedades físicas y químicas de suelos, para comparar las condiciones edafoclimáticas y las variables biofísicas relacionadas con la ganancia de biomasa. Los resultados muestran que de la información geográfica (SIG) y los datos edáficos y climáticos registrados en campo permiten anticipar las respuestas fisiológicas de la plantación, objetivo de estudio en el presente trabajo. | es-ES |
dc.format | application/pdf | |
dc.language | spa | |
dc.publisher | Corporación Colombiana de Investigación Agropecuaria (Agrosavia) | es-ES |
dc.relation | http://revista.corpoica.org.co/index.php/revista/article/view/377/292 | |
dc.source | Ciencia y Tecnología Agropecuaria; Vol. 16 No. 1 (2015); 25-40 | en-US |
dc.source | Ciencia & Tecnología Agropecuaria; Vol. 16 Núm. 1 (2015); 25-40 | es-ES |
dc.source | revista Corpoica Ciência e Tecnologia Agropecuária; v. 16 n. 1 (2015); 25-40 | pt-BR |
dc.source | 2500-5308 | |
dc.source | 0122-8706 | |
dc.source | 10.21930/rcta.vol16-num1 | |
dc.subject | Remote sensing | en-US |
dc.subject | GIS | en-US |
dc.subject | NDVI | en-US |
dc.subject | edaphoclimatic | en-US |
dc.subject | biophysica | en-US |
dc.subject | Percepción remota | es-ES |
dc.subject | SIG | es-ES |
dc.subject | NDVI | es-ES |
dc.subject | producción | es-ES |
dc.title | Application of a method of analysis of remote sensing data obtained by targeting the estimated productivity in cane for quantifying panela NDVI (normalized difference vegetation index) | en-US |
dc.title | Aplicación de una metodología de análisis de datos obtenidos por percepción remota orientados a la estimación de la productividad de caña para panela al cuantificar el NDVI (índice de vegetación de diferencia normalizada) | es-ES |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.citations | Abdel-Rahman EM, Ahmed FB. 2008. The application of remote sensing techniques to sugarcane (Saccharum spp. hybrid) production: a review of the literature. Int J Remote Sens. 29(13):3753-3767. https://doi.org/10.1080/01431160701874603 Akmal M, Janssens MJJ. 2004. Productivity and light use efficiency of perennial ryegrass with contrasting water and nitrogen supplies. Field Crop Res. 88(2-3):143-155. https://doi.org/10.1016/j.fcr.2003.12.004 Asrar G, Fuchs M, Kanemasu ET, Hatfield JL. 1984 Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat. Agron J. 76(2):300-306. https://doi.org/10.2134/agronj1984.00021962007600020029x Bégué A, Todoroff P, Pater J. 2008. Multi-time scale analysis of sugarcane within-field variability: improved crop diagnosis using satellite time series? Precision Agric. 9(3):161-171. https://doi.org/10.1007/s11119-008-9063-3 Benefetti R, Rossini P. 1993. On the use of NDVI profiles as a tool for agricultural statistics: the case study of wheat yield estimates and forecast in Emilia Romagna. Remote Sens Environ. 45(3):311-326. https://doi.org/10.1016/0034-4257(93)90113-C Departamento Administrativo Nacional de Estadística. 2014. Encuesta Nacional Agropecuaria-ENA. Bogotá: DANE; [consultado 2015 mar 18]. http://www.dane.gov.co/files/investigaciones/agropecuario/enda/ena/2013/cp_ena_2013.pdf. Departamento Administrativo Nacional de Estadística. 2013. Encuesta Nacional Agropecuaria. Bogotá: DANE; [consultado 2014 jul]. http://www.dane.gov.co/index.php/agropecuario/encuesta-nacional-agropecuaria. Elmorea AJ, Xun Shib NJ, Gorenceb NJ, Xia L, Jin H, Wang F, Zhang X. 2008. Spatial distribution of agricultural residue from rice for potential biofuel production in China. Biomass Bioenerg. 32(1):22-27. https://doi.org/10.1016/j.biombioe.2007.06.005 Epiphanio JCN, Gleriani JM, Formaggio AR, Rudorff BFT. 1996. Índices devegetação no sensoriamento remoto da cultura do feijão. Pesq Agropec Bras. 31(6):445-454. Field CB, Randerson JT, Malmström CM. 1995 Global net primary production: combining ecology and remote sensing. Remote Sens Environ. 51(1):74-88. https://doi.org/10.1016/0034-4257(94)00066-V Fortes C. 2003. Discriminacão varietal e estimativa de productividade agroindustrial de cana de acucar pelo sensor orbital ETM + LANDSAT 7 Piracad [tesis de maestría]. [Sao Paulo]: Universidad de Sao Paulo. Gower ST, Kucharik CJ, Norman JM. 1999. Direct and indirect estimation of leaf area index, fAPAR and net primary production of terrestrial ecosystems. Remote Sens Environ. 70(1):29-51. https://doi.org/10.1016/S0034-4257(99)00056-5 Instituto Nacional de Vigilancia de Medicamentos y Alimentos, Federación Nacional de Producción de Panela. 2009. ABC de la panela. Bogotá: Fedepanela; [consultado 2014 jul]. http://www.fedepanela.org.co/index.php/publicaciones/cartillas/4-abc-de-la-panela. Ji-hua M, Bing-fang W. 2008. Study on the crop condition monitoring methods with remote sensing. En: International Society for Photogrammetry and Remote Sensing. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B8; [consultado 2015 mar 19]. http://www.isprs.org/proceedings/XXXVII/congress/8_pdf/10_WG-VIII-10/05.pdf. Krishna PV, Venkateswara V, Venkataratnam L. 2002. Remote sensing: a technology for assessment of sugarcane crop acreage and yield. Sugartech. 4(3-4):97-101. https://doi.org/10.1007/BF02942689 Kumar M, Monteith JL. 1981. Remote sensing of crop growth. En: Smith H, editor. Plants and the daylight spectrum. Londres: Academic Press. pp. 133-144 Lucas AA, Shuler CAB. 2007. Analise do NDVI/NOAA em cana de açúcare Mata Atlântica no litoral norte de Pernambuco, Brasil. Rev Bras Eng Agríc Ambient. 11(6):607-614. https://doi.org/10.1590/S1415-43662007000600009 MarkSim™. 2011, DSSAT weather file generator and climate agriculture and food security, software; [consultado 2015 mar 19]. http://gismap.ciat.cgiar.org/MarkSimGCM/. Ministerio de Agricultura y Desarrollo Rural. 2013. Informe rendición de cuentas. Bogotá: Minagricultura; [consultado 2015 mar 18]. https://www.minagricultura.gov.co/atencion-ciudadano/Informes%20de%20Gestin%20al%20Ciudadano/Informe_rendicion_cuentas.pdf. Monteith JL. 1972. Solar radiation and productivity in tropical ecosystems. J Appl Ecol. 9(3):747-766. https://doi.org/10.2307/2401901 Osorio LA, Piñeros V, Ramírez JD, Rodríguez FL, Rua Y. 2015.El producto interno bruto. Cartago: Corporación de Estudios Tecnológicos del Norte del Valle; [consultado 2015 mar 18]. https://luisgodocente.wikispaces.com/file/view/TRABAJO+-DE+ECONOMIA+EL+PIB+(1).pdf. Picoli MCA. 2006. Estimativa da produtividade agrícola da cana-de-açúcar utilizando agregados de redes neurais artificiais: Estudo de caso usina Catanduva [tesis de maestría]. São José dos Campos: INPE. Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM, Mooney HA, Klooster SA. 1993. Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochem Cy. 7(4):811-841. https://doi.org/10.1029/93GB02725 Rahman R, Islam H, Rahman A. 2004. NDVI Derived Sugar cane area identification and crop condition assessment. En: Planpuls. Bangladesh: Khula University; [consultado 2015 mar 18]. http://ftp.ida.liu.se/~746A27/Literature/NDVI%20derived%20sugar%20cane%20area%20identification.pdf. Roeckner E, Bäuml L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, et al. 2003. The atmospheric general circulation model ECHAM5. Part I. Report 349. Hamburgo: Max Planck Institute for Meteorology. Rudorff BFT, Batista GT. 1990.Yield estimation of sugarcane based on agrometeorological-spectral models. Remote Sens Environ. 33(3):183-192. https://doi.org/10.1016/0034-4257(90)90029-L Ruimy A, Saugier B, Dedieu G. 1994. Methodology for the estimation of terrestrial net primary production from remotely sensed data. J Geophys Res. 99(D3):5263-5283. https://doi.org/10.1029/93JD03221 Simões M, Rocha J, Lamparelli RA. 2005. Spectral variables, growth analysis and yield of sugarcane. Sci Agric (Piracicaba, Braz). 62(3):199-207. https://doi.org/10.1590/S0103-90162005000300001 Soria-Ruiz, J. 2004. Methodology for prediction of corn yield using remote sensing satellite data in Central Mexico. Investi Geog. (55):61-78. https://doi.org/10.14350/rig.30111 Sugar Research and Development Corporation. 2007. SRDC Technical Report 3/2007. Precision agriculture options for the Australian sugarcane industry. Brisbane: Sugar Research and Development Corporation. Tucker CJ. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ. 8(2):127-150. https://doi.org/10.1016/0034-4257(79)90013-0 Turner BL, Papházy MJ, Haygarth PM, McKelvie ID. 2002. Inositol phosphates in the environment. Philos Trans R Soc Lond B Biol Sci. 357(1420):449-469. https://doi.org/10.1098/rstb.2001.0837 Ueno M, Kawamitsu Y, Sun L, Taira E, Maeda K. 2005.Combined applications of NIR, RS, and GIS for sustainable sugarcane production. Sugarcane International. 23(4):8-11. Wiegand CL, Richardson AJ, Escobar DE. (1991). Vegetation indices in crop assessment. Remote Sens Environ. 35(1-3):105-119. https://doi.org/10.1016/0034-4257(91)90004-P Xavier AC, Vettorazzi CA, MachadoR E. 2004. Relação entre índice de área foliar e frações de componentes puros do modelo linear de mistura espectral, usando imagenes ETM+/Landsat. Eng Agríc. 24(2):421-430. https://doi.org/10.1590/S0100-69162004000200022 | 0 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Agrosavia Revistas [263]