Mostrar el registro sencillo del ítem

Análisis experimental de la evaporación del jugo de caña de azúcar en película sobre una placa plana

dc.creatorMendieta Menjura, Oscar Andrés
dc.creatorEscalante Hernández, Humberto
dc.date2013-10-04
dc.date.accessioned2020-08-04T20:35:45Z
dc.date.available2020-08-04T20:35:45Z
dc.identifierhttp://revista.corpoica.org.co/index.php/revista/article/view/403
dc.identifier10.21930/rcta.vol14_num2_art:403
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/4591
dc.descriptionIn the production of “panela” (a block of unrefined whole cane sugar also known as piloncillo, raspadura, chancaca, jaggery) in Colombia, pans that have been traditionally used for evaporation of sugarcane juice have low energy efficiency problems. In the present study, a flat plate film evaporator was evaluated at a pilot scale. The temperature of the juice and the plate was measured with thermocouples, and the concentration of the soluble solids of the juice was measured with a refractometer. Evaporator performance was determined through the heat transfer coefficient on the side of liquid (h), which was related to the following operating parameters: mass flow, surface temperature, and the temperature and concentration of the fed liquid. The coefficient h profited by increasing: surface temperature (from 140.8 to 181.2 °C), feed concentration (from 18 to 30 °Brix), and juice feed flow (from 5.7 to 38.4 kg/h), and by decreasing feed temperature (from 90 to 60 °C). In the evaporation of sugarcane juice in a flat plate evaporator, h values between 140 and 380 W/m2K were found, which show a marked improvement for evaporation process of sugarcane juice.  en-US
dc.descriptionEn la producción de panela en Colombia, tradicionalmente se han utilizado pailas para la evaporación del jugo de caña de azúcar, las cuales presentan problemas de baja eficiencia energética. En este estudio se evaluó un evaporador de película en placa plana a escala piloto. La temperatura del jugo y la placa se midieron con termopares, y la concentración de sólidos solubles del jugo se midió con un refractómetro. El rendimiento del evaporador se determinó a través del coeficiente de transferencia de calor en el lado del líquido (h), el cual se relacionó con los parámetros de operación: flujo másico, temperatura de la superficie, y la temperatura y concentración del líquido alimentado. El coeficiente h se benefició por el aumento: de la temperatura de la superficie (de 140,8 a 181,2 °C), de la concentración del alimento (de 18 a 30 °Brix) y del flujo de alimento del jugo (de 5,7 a 38,4 kg/h); y por la disminución de la temperatura del alimento (de 90 a 60 °C). En la evaporación del jugo de caña de azúcar en el evaporador de película en placa plana se encontraron valores de h entre 140 y 380 W/m2K, los cuales muestran una mejora notable para el proceso de evaporación del jugo de caña de azúcar.es-ES
dc.formatapplication/pdf
dc.languagespa
dc.publisherCorporación Colombiana de Investigación Agropecuaria (Agrosavia)es-ES
dc.relationhttp://revista.corpoica.org.co/index.php/revista/article/view/403/320
dc.sourceCiencia y Tecnología Agropecuaria; Vol. 14 No. 2 (2013); 113-127en-US
dc.sourceCiencia & Tecnología Agropecuaria; Vol. 14 Núm. 2 (2013); 113-127es-ES
dc.sourcerevista Corpoica Ciência e Tecnologia Agropecuária; v. 14 n. 2 (2013); 113-127pt-BR
dc.source2500-5308
dc.source0122-8706
dc.source10.21930/rcta.vol14-num2
dc.subjectfuel economyen-US
dc.subjectfilm evaporationen-US
dc.subjectjiggeryen-US
dc.subjectheat transfer.en-US
dc.subjectahorro de combustiblees-ES
dc.subjectevaporación en películaes-ES
dc.subjectpanelaes-ES
dc.subjecttransferencia de calor.es-ES
dc.titleExperimental analysis of the evaporation of sugar cane juice by film on a flat plateen-US
dc.titleAnálisis experimental de la evaporación del jugo de caña de azúcar en película sobre una placa planaes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.citationsAdib TA, Heyd B, Vasseur J. 2009. Experimental results and modeling of boiling heat transfer coefficients in falling film evaporator usable for evaporator design. Chemical Engineering and Processing 48:961-968. https://doi.org/10.1016/j.cep.2009.01.004 Adib TA, Vasseur J. 2008. Bibliographic analysis of predicting heat transfer coefficients in boiling for applications in designing liquid food evaporators. Journal of Food Engineering 87:149-161. https://doi.org/10.1016/j.jfoodeng.2007.12.013 Amosun A, Gbabo A, Wada AC. 2000. Open Pan Sugar Processing Technology: An Option for Developing Countries, Sugar Tech, 2 (1-2):19-22. https://doi.org/10.1007/BF02945739 Anwar SI. 2010. Fuel and energy saving in open pan furnace used in jaggery making through modified juice boiling/concentrating pans. Energy Conversion and Management (51):360-364. https://doi.org/10.1016/j.enconman.2009.09.033 Bhargava R, Khanam S, Mohanty B, Ray AK. 2008. Simulation of flat falling film evaporator system for concentration of black liquor. Computers and Chemical Engineering 32:3213-3223. https://doi.org/10.1016/j.compchemeng.2008.05.012 Bouman S, Waalewijn R, De Jong P, Van Der Linden HJLJ. 1993. Design of falling - film evaporator in the dairy industry. Journal of the Society of Dairy Technology 46(3):100-106. https://doi.org/10.1111/j.1471-0307.1993.tb01256.x Chen CS, Hernandez E. 1997. Design and performance evaluation of evaporation. In Handbook of Food Engineering Practice, Valentas KJ, Rotstein E, Singh RP (eds.). CRC: Boca Raton, FL, 211-251. Chen H y Jebson RS. 1997. Factors affecting heat transfer in falling films evaporators. Trans IChemE vol. 75, Part C. https://doi.org/10.1205/096030897531423 Derringer G. 1994. A balancing act: optimizing a product's properties. Quality Progress, 51-58. García H, Albarracín L, Toscano A, Santana N, Insuasty O. 2007. Guía tecnológica para el manejo integral del sistema productivo de caña panelera. Corporación Colombiana de Investigación Agropecuaria, Bogotá. Gordillo G, García HR. 1992. Manual para el diseño y operación de hornillas paneleras. Convenio de investigación y divulgación para el mejoramiento de la industria panelera ICA-Holanda. Cimpa, Barbosa, Colombia. Grantham E. 2001. An alternate use of sugarcane: the open pan sugar process and its dual roles of rural development and cane supply regulation, Proc S Afr Sug Technol Ass 75. Holman JP. 1999. Transferencia de calor. 8 ed. Madrid, McGraw Hill. Hugot E. 1986. Handbook of Cane Sugar Engineering. 3th ed. Elsevier, Amsterdam. Incropera FP, Dewitt DP. 2002. Fundamentals of Heat and Mass Transfer. 5th ed. John Wiley & Sons, Hoboken, New Jersey. Jorge LMM, Righetto AR, Polli PA, Santos OAA, Filho RM. 2010. Simulation and analysis of a sugarcane juice evaporation system. Journal of Food Engineering 99: 351-359. https://doi.org/10.1016/j.jfoodeng.2010.03.017 Kang BH, Kim KH, Lee DY. 2007. Fluid flow and heat transfer on a falling liquid film with surfactant from a heated vertical surface. Journal of Mechanical Science and Technology 21:1807-1812. https://doi.org/10.1007/BF03177436 Kern DQ. 1999. Procesos de transferencia de calor. McGraw Hill. Kumar A, Tiwari GN. 2006. Effect of shape and size on convective mass transfer coefficient during greenhouse drying (GHD) of Jaggery. Journal of Food Engineering 73:121-134. https://doi.org/10.1016/j.jfoodeng.2005.01.011 Marquardt DW. 1963. An algorithm for least squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics 2:431-441. https://doi.org/10.1137/0111030 Mosquera S, Carrera J, Villada H. 2007. Variables that affect the quality of the processed panela in the department of Cauca. Facultad de Ciencias Agropecuarias Universidad del Cauca, Popayán. 5(1). Mujica MV, Guerra M, Soto N. 2008. Efecto de la variedad, lavado de la caña y temperatura de punteo sobre la calidad de la panela granulada. Interciencia 33(8). Nindo CI, Tang J, Powers JR, Bolland K. 2004. Energy consumption during Refractance Window evaporation of selected berry juices. Int. J. Energy Res 28:1089-1100. https://doi.org/10.1002/er.1017 Pacheco CRF, Cézar CA, Song TW. 1999. Effect of the solute concentration on the performance of evaporator. Chemical Engineering and Processing 38:109-119. https://doi.org/10.1016/S0255-2701(98)00078-6 Peacock SD, Love DJ. 2003. Clear juice heater: Do we need them? Proc S Afr Sug. Technol. Ass. 77. Peña A. 2009. Determinación de propiedades fisicoquímicas de jugos y mieles de caña panelera. Universidad Nacional de Colombia. Programa de Especialización en Ciencia y Tecnología de Alimentos. Bogotá D.C. Perry RH, Green DW. 2008. Perry's Chemical Engineers' Handbook. 8th ed. McGraw-Hill. Prost JS, Gonzalez MT, Urbicain MJ. 2006. Determination and correlation of heat transfer coefficients in a falling film evaporator. Journal of Food Engineering 4(73):320-326. https://doi.org/10.1016/j.jfoodeng.2005.01.032 Quinn G, Cetegen BM. 2010. Effect of surfactant addition on boiling heat transfer in a liquid film flowing in a diverging open channel. International Journal of Heat and Mass Transfer 53:245-253. https://doi.org/10.1016/j.ijheatmasstransfer.2009.09.035 Rao JPVK, Das M, Das SK. 2009. Changes in physical and thermophysical properties of sugarcane, palmyra-palm and date-palm juices at different concentration of sugar. Journal of Food Engineering 90:559-566. https://doi.org/10.1016/j.jfoodeng.2008.07.024 Rao MA, Vitali AA. 1999. Fruit juice concentration and preservation. In: Handbook of Food Preservation, Rahman MS (ed.). Marcel Dekker: New York, 218-233. Sardeshpande VR, Shendage DJ, Pillai IR. 2010. Thermal performance evaluation of a four pan jaggery processing furnace for improvement in energy utilization. Energy 35:4740-4747. https://doi.org/10.1016/j.energy.2010.09.018 Singh RD, Badoo B, Singh AK, Anwar SI. 2009. Performance evaluation of two pan furnace for jaggery making. IE(I) Journal- AG Volume 90. Smith JM, Van Ness HC, Abbott MM. 1997. Introducción a la termodinámica en ingeniería química. 5a ed. México D.F. McGraw Hill. Thakur AK. 1999. Potential of jaggery (Gur) manufacturing in Punjab state. In: Proceedings of the National Seminar on Status, Problems and Prospects of Jaggery and Khandsari Industry in India. Indian Institute of Sugarcane Research, Lucknow, 70-76. Tiwari GN, Kumar S, Prakash O. 2003. Study of heat and mass transfer from sugarcane juice for evaporation. Desalination 159:81-96. https://doi.org/10.1016/S0011-9164(03)90047-6 Tsay YL, Lin TF. 1995. Evaporation of a heated falling liquid film into a laminar gas stream. Experimental Thermal and Fluid Science 11:61-71. https://doi.org/10.1016/0894-1777(94)00112-L Uppal SK, Sharma S. 1999. Evaluation of different methods of jaggery (Gur) storage in subtropical region. Indian J Sugarcane Technol 14(1):17-21. Valentas KJ, Rotstein E, Singh RP (Eds.). 1997. Handbook of food engineering practice. CRC Press, LLC. https://doi.org/10.1201/9781420049077 Wadekar VV, Hills PD. 2001. Evaporative heat transfer to solutions containing dissolved solids: effect of vapour-liquid equilibrium and mass transfer. Trans IChemE, vol. 79, part A. https://doi.org/10.1205/026387601750282418 Yan WM, Soong CY. 1995. Convective heat and mass transfer along an inclined heated plate with film evaporation. Inf. J. Heat Mass Transfer 38(7):1261-1269. https://doi.org/10.1016/0017-9310(94)00241-M0


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem