Mostrar el registro sencillo del ítem
Removal of cypermethrin from cattle bath by using constructed wetland system
Remoción de cipermetrina presente en el baño de ganado utilizando humedales construidos;
Remoção de cipermetrina presente no banho de gado utilizando poças construídas
dc.creator | Marrugo Negrete, José Luis | |
dc.creator | Ortega-Ruíz, José Gregorio | |
dc.creator | Navarro Frómeta, Amado Enrique | |
dc.creator | Enamorado Montes, Germán Holland | |
dc.creator | Urango Cárdenas, Iván David | |
dc.creator | Pinedo Hernández, José Joaquín | |
dc.creator | Durango Hernández, José David | |
dc.creator | Estrada Martínez, Arnulfo José | |
dc.date | 2016-07-14 | |
dc.date.accessioned | 2020-08-04T20:35:49Z | |
dc.date.available | 2020-08-04T20:35:49Z | |
dc.identifier | http://revista.corpoica.org.co/index.php/revista/article/view/489 | |
dc.identifier | 10.21930/rcta.vol17_num2_art:489 | |
dc.identifier.uri | http://test.repositoriodigital.com:8080/handle/123456789/4610 | |
dc.description | Ectoparasite control in the livestock sector involves the use of chemicals to prevent production losses. In small farms that produce milk in the Córdoba department, the use of the pumping system for the cattle bath is common between farmers. In this work, cypermethrin degradation efficiency was evaluated in three lab-scale subsurface flow constructed wetland planted with Limnocharis flava, Cyperus papyrus and Alpinia purpurata sp., and one unplanted system, all of the beds were gravel based; then, total suspended solids and total phosphorus retention, and elimination of chemical oxygen demand were measured as water quality parameters. The wastewater was pretreated in a descending-ascending slow sand filter, and then was conducted to a wetland continuous flow fed at 7 ml/min. Limnocharis flava bed was higher for the degradation of organic compounds, with 97.9 ± 2.5 % and 69.1 ± 3.7 % for cypermethrin and chemical oxygen demand respectively, with statistically significant differences (p < 0,05) respect to unplanted bed. The higher SST removal were found in the Cyperus papyrus wetland, with 62,0 %, however, no differences were observed with the other evaluated planted systems, as opposed these were significantly higher than unplanted wetlands. | en-US |
dc.description | El control de ectoparásitos en el sector ganadero implica el uso de productos químicos para prevenir pérdidas en la producción. En las pequeñas fincas productoras de leche del departamento de Córdoba, el uso del sistema de bombeo para el baño del ganado es habitual en las actividades agropecuarias. En este trabajo se evaluó la eficiencia de degradación de cipermetrina en tres humedales construidos de flujo subsuperficial horizontal a escala de laboratorio, plantados con las especies Limnocharis flava, Cyperus papyrus y Alpinia purpurata sp., y un sistema sin plantar. De igual forma, se determinó la retención de sólidos suspendidos totales (SST), fósforo total (PT) y demanda química de oxígeno (DQO) como indicadores del recurso hídrico. Inicialmente, la muestra fue sometida a un tratamiento primario con filtro de arena, flujo descendente-ascendente, y posteriormente un tratamiento en el sistema de humedales operado bajo flujo continuo de 7 ml/min. El humedal que contenía la especie Limnocharis flava presentó mejores resultados para la degradación de compuestos orgánicos con 97,9 ± 2,5 % (cipermetrina) y 69,1 ± 3,7 % (DQO), con diferencias estadísticamente significativas (p < 0,05) respecto al sistema sin plantar. Las remociones más altas de SST seobservaron en los humedales con Cyperus papyrus,hasta 62,0 %, aunque no se presentaron diferencias con los otros sistemas plantados evaluados, estas fueron significativamente mayores a los humedales sin plantar. | es-ES |
dc.description | O controle de ectoparasitos no sector pecuario implica o uso de produtos quimicos para prevenir perdas na producao. Nos pequenos sitios produtores de leite do departamento de Cordoba, o uso do sistema de bombeamento para o banho do gado e habitual nas atividades agropecuarias. Em este trabalho avaliou-se a eficiencia de degradacao de cipermetrina em tres pocas construidas de fluxo sub-superficial horizontal a escala de laboratorio, semeados com as especies Limnocharis flava, Cyperus papyrus e Alpinia purpurata sp., e um sistema sem plantar. De igual forma, se determinou a retencao de solidos suspendidos totais (SST), fosforo total (PT) e demanda quimica de oxigenio (DQO) como indicadores do recurso hidrico. A amostra inicialmente foi submetida a um tratamento primario com filtro de areia, fluxo descendenteascendente, para posterior tratamento no sistema de pocas operado baixo fluxo continuo de 7 ml/min. O poca que continha a especie Limnocharis flava apresentou melhores resultados para a degradacao de compostos organicos com 97,9 } 2,5 % (cipermetrina) e 69,1 } 3,7 % (DQO), com diferencas estatisticamente significativas (p < 0,05) a respeito ao sistema sem plantar. As remocoes mas altas de SST se observaram nas pocas com Cyperus papyrus, hasta 62,0 %, porem nao se apresentaram diferencas com os outros sistemas semeados avaliados, estas foram significativamente maiores as pocas sem plantar. | pt-BR |
dc.format | application/pdf | |
dc.language | spa | |
dc.publisher | Corporación Colombiana de Investigación Agropecuaria (Agrosavia) | es-ES |
dc.relation | http://revista.corpoica.org.co/index.php/revista/article/view/489/389 | |
dc.source | Ciencia y Tecnología Agropecuaria; Vol. 17 No. 2 (2016); 203-216 | en-US |
dc.source | Ciencia & Tecnología Agropecuaria; Vol. 17 Núm. 2 (2016); 203-216 | es-ES |
dc.source | revista Corpoica Ciência e Tecnologia Agropecuária; v. 17 n. 2 (2016); 203-216 | pt-BR |
dc.source | 2500-5308 | |
dc.source | 0122-8706 | |
dc.source | 10.21930/rcta.vol17-num2 | |
dc.subject | Pest control | en-US |
dc.subject | Cattle | en-US |
dc.subject | Pesticide residues | en-US |
dc.subject | Livestock farms | en-US |
dc.subject | Water management | en-US |
dc.subject | Aquatic plants | en-US |
dc.subject | control de plagas | es-ES |
dc.subject | ganado bovino | es-ES |
dc.subject | residuos de plaguicidas | es-ES |
dc.subject | explotaciones ganadera | es-ES |
dc.subject | manejo de aguas | es-ES |
dc.subject | plantas acuáticas | es-ES |
dc.subject | controle de plagas | pt-BR |
dc.subject | gado bovino | pt-BR |
dc.subject | resíduos de pesticidas | pt-BR |
dc.subject | explorações de gado | pt-BR |
dc.subject | manejo de águas | pt-BR |
dc.subject | plantas aquáticas. | pt-BR |
dc.title | Removal of cypermethrin from cattle bath by using constructed wetland system | en-US |
dc.title | Remoción de cipermetrina presente en el baño de ganado utilizando humedales construidos | es-ES |
dc.title | Remoção de cipermetrina presente no banho de gado utilizando poças construídas | pt-BR |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.citations | Akratos CS, Tsihrintzis VA. 2007. Effect of temperature,HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands. Ecol Eng. 29(2):173-191. https://doi.org/10.1016/j.ecoleng.2006.06.013 Al-Ghanim KA. 2014. Effect of a Synthetic Pyrethyroid,Cypermethrin, on Aminotransferases and Glutamate Dehydrogenase Activities in Gill, Liver and Muscles of a Freshwater Fish, Cyprinus carpi. Pakistan J Zool.46(4):997-1001. Álvarez JA, Ruiz I, Soto M. 2008. Anaerobic digesters as a pretreatment for constructed wetlands. Ecol Eng.33(1):54-67. https://doi.org/10.1016/j.ecoleng.2008.02.001 American Public Health Association, American Water Works Association, Water Environment Federation. 2005. Standard methods for the examination of water and wastewater. 21a ed. Maryland, Estados Unidos: Port City Press. Araque A, Ujueta S, Bonilla R, Gómez D, Rivera J. 2014.Resistencia a acaricidas en Rhipicephalus (Boophilus) microplus de algunas explotaciones ganaderas de Colombia. Rev UDCA Act & Div Cient. 17(1):161-170. https://doi.org/10.31910/rudca.v17.n1.2014.951 Bojcevska H, Tonderski K. 2007. Impact of loads, season, and plant species on the performance of a tropical constructed wetland polishing effluent from sugar factory stabilization ponds. Ecol Eng. 29(1):66-76. https://doi.org/10.1016/j.ecoleng.2006.07.015 Budd R, O'Geen A, Goh KS, Bondarenko S, Gan J. 2009.Efficacy of constructed wetlands in pesticide removal from tailwaters in the Central Valley, California. Environ Sci Technol. 43(8):2925-2930. https://doi.org/10.1021/es802958q Calheiros CSC, Rangel AOSS, Castro PML. 2007. Constructed wetland systems vegetated with different plants applied to the treatment of tannery wastewater. Water Res.41(8):1790-1798. https://doi.org/10.1016/j.watres.2007.01.012 Carvalho PN, Araújo JL, Mucha AP, Basto MC, Almeida CM. 2013. Potential of constructed wetlands microcosms for the removal of veterinary pharmaceuticals from livestock wastewater. Bioresour Technol. 134:412-416. https://doi.org/10.1016/j.biortech.2013.02.027 Caselles-Osorio A, Garcia J. 2007. Effect of physico-chemical pretreatment on the removal efficiency of horizontal subsurface-flow constructed wetlands. Environ Pollut.146(1):55-63. https://doi.org/10.1016/j.envpol.2006.06.022 Caselles-Osorio A, Puigayut J, Segú E, Vaello N, Granés F, García D, García J. 2007. Solids accumulation in six fullscale subsurface flow constructed wetlands. Water Res.41(6):1388-1398. https://doi.org/10.1016/j.watres.2006.12.019 Cheng H, Ouyang W, Hao F, Ren X, Yang S. 2007. The non-point source pollution in livestock-breeding areas of the Heihe River basin in Yellow River. Stoch Environ Res Risk Assess.21(3):213-221. https://doi.org/10.1007/s00477-006-0057-2 Chhabra A, Manjunath KR, Panigrahy S, Parihar JS. 2013.Greenhouse gas emissions from Indian livestock. Clim Chang. 117(1-2):329-344. https://doi.org/10.1007/s10584-012-0556-8 De la Varga D, Díaz MA, Ruiz I, Soto M. 2013. Avoiding clogging in constructed wetlands by using anaerobic digesters as pre-treatment. Ecol Eng. 52:262-269. https://doi.org/10.1016/j.ecoleng.2012.11.005 Dordio AV, Carvalho AJ. 2013. Organic xenobiotics removal in constructed wetlands, with emphasis on the importance of the support matrix. J Hazard Mater. 252:272-292. https://doi.org/10.1016/j.jhazmat.2013.03.008 Durango J, Urango I, Pinedo J, Burgos S, Estrada A, Ortega J, Taboada R, Figueroa J, Marrugo J, Enamorado G. 2014.Evaluación un filtro lenta de arena, de tipo descendenteascendente,para el tratamiento de efluentes ganaderos contaminados con cipermetrina. Póster presentado en:VII Seminario Internacional de Gestión Ambiental y II Seminario de Ciencias Ambientales Sue-Caribe. Santa Marta, Colombia. Díaz E. 2012. Mecanismos moleculares y bioquímicos de resistencia a acaricidas en la garrapata común de los bovinos Rhipicephalus microplus. Rev Colombiana Cienc Anim.5(1):72-81. Fernández-Salas A, Rodríguez-Vivas RI, Alonso-Díaz MA.2012. First report of a Rhipicephalus microplus tick population multi-resistant to acaricides and ivermectin in the Mexican tropics. Vet Parasitol. 183(3-4):338-342. https://doi.org/10.1016/j.vetpar.2011.07.028 Fu YC, Ruan BQ, Gao T. 2013. Watershed agricultural non-point source pollution management. Pol J Environ Stud. 22(2):367-375. García J, Corzo A. 2008. Depuración con humedales construidos. Guía práctica de diseño, construcción y explotación de sistemas de humedales de flujo subsuperficial.Barcelona, España: Universitat Politècnica de Catalunya.Capítulo 1, Sistemas Naturales de Depuración; p. 1-4. Havlikova M, Kroeze C, Huijbregts MA. 2008. Environmental and health impact by dairy cattle livestock and manure management in the Czech Republic. Sci Total Environ.396(2-3):121-131. https://doi.org/10.1016/j.scitotenv.2008.02.027 Hedegaard MJ, Albrechtsen HJ. 2014. Microbial pesticide removal in rapid sand filters for drinking water treatment-Potential and kinetics. Water Res. 48:71-81. https://doi.org/10.1016/j.watres.2013.09.024 Hladik ML, Smalling KL, Kuivila KM. 2009. Methods of analysis-Determination of pyrethroid insecticides in water and sediment using gas chromatography/mass spectrometry.Reston, Estados Unidos: U.S. Geological Survey. https://doi.org/10.3133/tm5C2 Instituto Colombiano Agropecuario. 2011. Estadísticas de comercialización de plaguicidas químicos de uso agrícola 2010. Bogota, Colombia: ICA. Kadlec RH, Wallace SD. 2008a. Treatment Wetlands. 2a ed.Nueva York, Estados Unidos: CRC Press. Chapter 5, Air,Water, and Soil Chemical Interactions; p. 133-161. https://doi.org/10.1201/9781420012514.ch5 Kadlec RH, Wallace SD. 2008b. Treatment Wetlands. 2a ed.Nueva York, Estados Unidos: CRC Press. Chapter 10,Phosphorus; p. 349-402. https://doi.org/10.1201/9781420012514 Kim SY, Pramanik P, Bodelier PLE, Kim PJ. 2014. Cattle manure enhances methanogens diversity and methane emissions compared to swine manure under rice paddy. Plos One. 9(12):e113593. https://doi.org/10.1371/journal.pone.0113593 Kumar A, Sharma B, Pandey RS. 2014. Lambda-Cyhalothrin and cypermethrin induce stress in the freshwater muddy fish, Clarias batrachus. Toxicol Environ Chem. 96(1):136-149. https://doi.org/10.1080/02772248.2014.913865 Lee H, Shoda M. 2008. Removal of COD and color from livestock wastewater by the Fenton method. J Hazard Mater.153(3):1314-1319. https://doi.org/10.1016/j.jhazmat.2007.09.097 Li CY, Wu SB, Sun F, Lv T, Dong RJ, Pang CL. 2012. Performance of lab-scale tidal flow constructed wetlands treating livestock wastewater. Adv Mat Res. 518:2631-2639. https://doi.org/10.4028/www.scientific.net/AMR.518-523.2631 Loteste A, Scagnetti J, Simoniello MF, Campana M, Parma MJ. 2013. Hepatic enzymes activity in the fish Prochilodus lineatus (Valenciennes, 1836) after sublethal cypermethrin exposure. Bull Environ Contam Toxicol. 90(5):601-604. https://doi.org/10.1007/s00128-013-0961-3 Machado FA, Pivoto FL, Ferreira MS, Gregorio FdeV, Vogel FS, Sangioni LA. 2014. Rhipicephalus (Boophilus) microplus in the western-central region of Rio Grande do Sul, Brazil:multiresistant tick. Rev Bras Parasitol Vet. 23(3):337-342. https://doi.org/10.1590/S1984-29612014063 Mahabali S, Spanoghe P. 2014. Mitigation of Two Insecticides by Wetland Plants: Feasibility Study for the Treatment of Agricultural Runoff in Suriname (South America). Water Air Soil Pollut. 225:1771. https://doi.org/10.1007/s11270-013-1771-2 Marques DM, Leite GR, Giovannini SG. 2001. Performance of two macrophyte species in experimental wetlands receiving variable loads of anaerobically treated municipal wastewater.Water Sci Technol. 44(11-12):311-316. https://doi.org/10.2166/wst.2001.0845 McGechan MB, Lewis DR, Vinten AJA. 2008. A river water pollution model for assessment of best management practices for livestock farming. Biosyst Eng. 99(2):292-303. https://doi.org/10.1016/j.biosystemseng.2007.10.010 Othman I, Anuar AN, Ujang Z, Rosman NH, Harun H,Chelliapan S. 2013. Livestock wastewater treatment using aerobic granular sludge. Bioresource Technol. 133:630-634. https://doi.org/10.1016/j.biortech.2013.01.149 Pedescoll A, Corzo A, Álvarez E, Puigagut J, García J. 2011.Contaminant removal efficiency depending on primary treatment and operational strategy in horizontal subsurface flow treatment wetlands. Ecol Eng. 37(2):372-380. https://doi.org/10.1016/j.ecoleng.2010.12.011 Pinos-Rodriguez JM, Garcia-Lopez JC, Pena-Avelino LY,Rendon-Huerta JA, Gonzalez-Gonzalez C, Tristan-Patino F. 2012. Environmental regulations and impact of manure generated by livestock operations in some american countries. Agrociencia. 46(4):359-370. Richterová Z, Svobodova Z. 2012. Pyrethroids influence on fish. Slov Vet Res. 49(2):63-72. Sánchez-Fortún S, Barahona MV. 2005. Comparative study on the environmental risk induced by several pyrethroids in estuarine and freshwater invertebrate organisms.Chemosphere. 59(4):553-559. https://doi.org/10.1016/j.chemosphere.2004.12.023 Solano ML, Soriano P, Ciria MP. 2004. Constructed wetlands as a sustainable solution for wastewater treatment in small villages. Biosyst Eng. 87(1):109-118. https://doi.org/10.1016/j.biosystemseng.2003.10.005 Stefanakis A, Akratos CS, Tsihrintzis VA, Tsihrintzis ASSAA.2014. Vertical Flow Constructed Wetlands. Boston: Elsevier.Chapter 1. Introduction; p. 1-16. https://doi.org/10.1016/B978-0-12-404612-2.00001-5 Taju G, Majeed S, Nambi KSN, Farook MA, Vimal S, Hameed AS. 2014. In vitro cytotoxic, genotoxic and oxidative stress of cypermethrin on five fish cell lines. Pest Biochem Physiol.113:15-24. https://doi.org/10.1016/j.pestbp.2014.06.006 Vinten AJ, Potts J, Avery L, Strachan NJ. 2009. Microbial pollution of water by livestock: approaches to risk assessment and mitigation. Animal. 3(5):744-752. https://doi.org/10.1017/S1751731109004005 Vymazal J. 2014. Constructed wetlands for treatment of industrial wastewaters: A review. Ecol Eng. 73:724-751. https://doi.org/10.1016/j.ecoleng.2014.09.034 Woli KP, Nagumo T, Kuramochi K, Hatano R. 2004.Evaluating river water quality through land use analysis and N budget approaches in livestock farming areas. Sci Total Environ. 329(1-3):61-74. https://doi.org/10.1016/j.scitotenv.2004.03.006 Zhang Z, Li Y, Chen S, Wang S, Bao X. 2012. Simultaneous nitrogen and carbon removal from swine digester liquor by the Canon process and denitrification. Bioresour Technol.114:84-89. https://doi.org/10.1016/j.biortech.2012.03.006 Zhao L, Zhu W, Tong W. 2009. Clogging processes caused by biofilm growth and organic particle accumulation in lab-scale vertical flow constructed wetlands. J Environ Sci(China). 21(6):750-757. https://doi.org/10.1016/S1001-0742(08)62336-0 | 0 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Agrosavia Revistas [263]