Mostrar el registro sencillo del ítem

Determinación voltamétrica de paraquat y glifosato en aguas superficiales;
Determinação voltamétrica de paraquato e glifosato em águas superficiais

dc.creatorAlza-Camacho, William Roberto
dc.creatorGarcía-Colmenares, José Mauricio
dc.creatorChaparro-Acuña, Sandra Patricia
dc.date2016-08-16
dc.date.accessioned2020-08-04T20:35:50Z
dc.date.available2020-08-04T20:35:50Z
dc.identifierhttp://revista.corpoica.org.co/index.php/revista/article/view/510
dc.identifier10.21930/rcta.vol17_num3_art:510
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/4616
dc.descriptionThe indiscriminate use of pesticides on crops has a negative environmental impact that affects organisms, soil and water resources, essential for life. Therefore, it is necessary to evaluate the residual effect of these substances in water sources. A simple, affordable and accessible electrochemical method for Paraquat and Glyphosate quantification in water was developed. The study was conducted using as supporting electrolyte Britton-Robinson buffer solution, working electrode of glassy carbon, Ag/AgCl as the reference electrode, and platinum as auxiliary electrode. Differential pulse voltammetry (VDP) method for both compounds were validated. Linearity of the methods presented a correlation coefficient of 0.9949 and 0.9919 and the limits of detection and quantification were 130 and 190 mg/L for Paraquat and 40 and 50 mg/L for glyphosate. Comparison with the reference method showed that the electrochemical method provides superior results in quantification of analytes. Of the samples tested, a value of Paraquat was between 0,011 to 1,572 mg/L and for glyphosate it was between 0.201 to 2.777 mg/L, indicating that these compounds are present in water sources and that those may be causing serious problems to human health.en-US
dc.descriptionEl uso indiscriminado de plaguicidas en los cultivos genera un impacto ambiental negativo que afecta a los organismos vivos, al suelo y al recurso hídrico. Por lo tanto, es necesario evaluar la residualidad de este tipo de sustancias en fuentes de agua que sirven como abastecimiento para la comunidad, los animales y las labores agrícolas. Con base en esto, se plantea una metodología electroquímica sencilla, económica y asequible para la cuantificación de paraquat y glifosato en las fuentes hídricas aledañas a los cultivos de papa  de tres veredas del municipio de Ventaquemada (Boyacá). El estudio fue realizado usando como electrolito de soporte la solución buffer Britton-Robinson, un electrodo de trabajo de carbón vítreo, Ag/AgCl como electrodo de referencia y platino como electrodo auxiliar. Se validaron los métodos de voltametría de onda cuadrada (VOC) para ambos compuestos, los cuales presentaron un potencial de -650 y -545 mV, respectivamente. La linealidad de los métodos presentó un coeficiente de correlación de 0,9949 y 0,9919. Los límites de detección y cuantificación fueron de 130 y 190 μg/L para paraquat y de 40 y 50 μg/L para glifosato. De las muestras evaluadas se obtuvo un valor de paraquat entre 0,011 y 1,572 mg/L, y de glifosato entre 0,201 y 2,777 mg/L, lo que indica que estos compuestos están presentes en las fuentes hídricas cercanas a los cultivos y que pueden estar causando serios inconvenientes a la salud humana.    es-ES
dc.descriptionO uso indiscriminado de praguicidas nas culturas gera um impacto ambiental negativo que afeta aos organismos vivos, ao solo e ao recurso hídrico. Pelo tanto, é preciso avaliar a residualidade deste tipo de substâncias em fontes de água que são utilizados como fornecimento para a comunidade, os animais e as labores agrícolas. Com base em isto, sugere-se uma metodologia eletroquímica simples, económica e acessível para a quantificação de paraquato e glifosato nas fontes hídricas próximas às culturas de batata de três veredas do municipio de Ventaquemada (Boyacá). O estudo foi realizado usando como eletrólito de suporte a solução buffer Britton-Robinson, o eletrodo de trabalho de carvão vítreo, Ag/AgCl como eletrodo de referência e platino como eletrodo auxiliar. Validaram-se os métodos de voltametria de onda quadrada (VOC) para ambos compostos, os quais apresentaram um potencial de -650 e -545 mV, respectivamente. A linearidade dos métodos apresentou um coeficiente de correlação de 0,9949 e 0,9919. Os limites de detecção e quantificação foram de 130 e 190 μg/L para paraquato e de 40 e 50 μg/L para glifosato. Das amostras avaliadas se obteve um valor de paraquato entre 0,011 e 1,572 mg/L, e de glifosato entre 0,201 e 2,777 mg/L, o que indica que estes compostos estão presentes nas fontes hídricas próximas aos cultivos e que podem estar causando sérios inconvenientes à saúde humana.    pt-BR
dc.formatapplication/pdf
dc.languagespa
dc.publisherCorporación Colombiana de Investigación Agropecuaria (Agrosavia)es-ES
dc.relationhttp://revista.corpoica.org.co/index.php/revista/article/view/510/408
dc.sourceCiencia y Tecnología Agropecuaria; Vol. 17 No. 3 (2016); 331-345en-US
dc.sourceCiencia & Tecnología Agropecuaria; Vol. 17 Núm. 3 (2016); 331-345es-ES
dc.sourcerevista Corpoica Ciência e Tecnologia Agropecuária; v. 17 n. 3 (2016); 331-345pt-BR
dc.source2500-5308
dc.source0122-8706
dc.source10.21930/rcta.vol17-num3
dc.subjectContaminationen-US
dc.subjectChemical weed controlen-US
dc.subjectPotatoesen-US
dc.subjectPesticide residuesen-US
dc.subjectWater resourcesen-US
dc.subjectcontaminaciónes-ES
dc.subjectcontrol químico de malezases-ES
dc.subjectpapaes-ES
dc.subjectresiduos de plaguicidases-ES
dc.subjectrecursos hídricoses-ES
dc.subjectGestión y sostenibilidad ambientales-ES
dc.subjectcontaminaçãopt-BR
dc.subjectcontrole químico de ervas daninhaspt-BR
dc.subjectbatatapt-BR
dc.subjectresíduos de praguicidaspt-BR
dc.subjectrecursos hídricospt-BR
dc.titleVoltammetric Quantification of Paraquat and Glyphosate in Surface Watersen-US
dc.titleDeterminación voltamétrica de paraquat y glifosato en aguas superficialeses-ES
dc.titleDeterminação voltamétrica de paraquato e glifosato em águas superficiaispt-BR
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.citationsAlcaldía de Ventaquemada. 2014. Geografía. Boyacá: Alcaldía de Ventaquemada; [consultado 2016 abr 27]. http://www.ventaquemada-boyaca.gov.co/informacion_general.shtml#-geografia. [AOAC] Association of Official Analytical Chemists. 1990. Official methods of analysis agricultural chemicals contaminants. Paraquat in pesticide formulations, spectrophotometric method. Gaithersburg, EE. UU.: AOAC International. pp. 227-228. [APHA] American Public Health Association. 2012. Standard methods for the examination of water and wastewater. Metropolitan Waterworks Authority; [consultado 2015 sep 16]. www.mwa.co.th/download/file_upload/SMWW_1000-3000.pdf. Bajwa AA. 2014. Sustainable weed management in conservation agriculture. Crop Prot. 65:105-113. https://doi.org/10.1016/j.cropro.2014.07.014 Besagarahally L, Bhaskara N, Padmarajaiah N. 2006. Direct sensitive spectrophotometric determination of glyphosate by using ninhydrin as a chromogenic reagent in formulations and environmental water samples. Helv Chim Acta. 89(11):2686-2693. https://doi.org/10.1002/hlca.200690240 Bromilow R. 2004. Paraquat and sustainable agriculture. Pest Manag Sci. 60(4):340-349. https://doi.org/10.1002/ps.823 [CDC] Centers for Disease Control and Prevention. 2013. Facts about paraquat; [consultado 2015 sept. 30]. http://emergency.cdc.gov/agent/paraquat/basics/facts.asp. Chen CM, Lua AC 2000. Lung toxicity of paraquat in the rat. J Toxicol Environ Health A. 60(7):477-487. https://doi.org/10.1080/00984100050079548 Chen MX, Cao ZY, Jiang Y, Zhu ZW. 2013. Direct determination of glyphosate and its major metabolite, aminomethylphosphonic acid, in fruits and vegetables by mixed-mode hydrophilic interaction/weak anionexchange liquid chromatography coupled with electrospray tandem mass spectrometry. J Chromatogr A. 1272:90-99. https://doi.org/10.1016/j.chroma.2012.11.069 Dallegrave E, Mantese FD, Coelho RS, Pereira JD, Dalsenter PR, Langeloh A. 2003. The teratogenic potential of the herbicide glyphosate-Roundup in Wistar rats. Toxicol Lett. 142(1-2):45-52. https://doi.org/10.1016/S0378-4274(02)00483-6 Dedzo GK, Nanseú-Njiki CP, Ngameni E. 2012. Amperometric sensors based on sawdust film modified electrodes: application to the electroanalysis of paraquat. Talanta. 99:478-486. https://doi.org/10.1016/j.talanta.2012.06.013 Dos Santos LB, Infante CM, Masini JC. 2010. Development of a sequential injection-square wave voltammetry method for determination of paraquat in water samples employing the hanging mercury drop electrode. Anal Bioanal Chem. 396(5):1897-1903. https://doi.org/10.1007/s00216-009-3429-x El-Mhammedi MA, Achak M, Bakasse M, Bachirat R, Chtaini A. 2010. Accumulation and trace measurement of paraquat at kaolin-modified carbon paste electrode. Mater Sci Eng C. 30(6):833-838. https://doi.org/10.1016/j.msec.2010.03.019 [EPA] US Environmental Protection Agency. 2014. Drinking water contaminants - standards and regulations; [consultado 2015 sept 30]. https://www.epa.gov/ground-waterand-drinking-water/table-regulated-drinking-watercontaminants#Inorganic. Eurachem. 2005. Métodos analíticos adecuados a su propósito. Segunda Edición. México: Cenam. Gasnier C, Dumont C, Benachour N, Clair E, Chagnon M-C, Séralini G-E. 2009. Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines. Toxicology. 262(3):184-191. https://doi.org/10.1016/j.tox.2009.06.006 Hu YS, Zhao YQ. 2011. Removal of glyphosate from aqueous environment by adsorption using water industrial residual. Desalination. 271(1-3):150-156. https://doi.org/10.1016/j.desal.2010.12.014 Ibáñez M, Pozo OJ, Sancho JV, López FJ, Hernández F. 2006. Re-evaluation of glyphosate determination in water by liquid chromatography coupled to electrospray tandem mass spectrometry. J Chromatogr A. 1134(1-2):51-55. https://doi.org/10.1016/j.chroma.2006.07.093 Jiang J, Lucy CA. 2007. Determination of glyphosate using off-line ion exchange preconcentration and capillary electrophoresis-laser induced fluorescence detection. Talanta. 72(1):113-118. https://doi.org/10.1016/j.talanta.2006.10.001 Kodama S, Ito Y, Taga A, Nomura Y, Yamamoto A, Chinaka S, Suzuki K, Yamashita T, Kemmei T, Hayakawa K. 2008. A fast and simple analysis of glyphosate in tea beverages by capillary electrophoresis with on-line copper(II)-Glyphosate complex formation. J Health Sci. 54 (5):602-606. https://doi.org/10.1248/jhs.54.602 Laguarda-Miro N, Werner-Ferreria F, García-Breijo E, Ibáñez-Civera J, Gil-Sánchez L, Garrigues-Baixauli J. 2012. Glyphosate detection by voltammetric techniques. A comparison between statistical methods and an artificial neural network. Sensor Actuat B-Chem. 171-172:528-536. https://doi.org/10.1016/j.snb.2012.05.025 Lan H, Jiao Z, Zhao X, He W, Wang A, Liu H, Liu R, Qu J. 2013. Removal of glyphosate from water by electrochemically assisted MnO2 oxidation process. Sep Purif Technol. 117:30-34. https://doi.org/10.1016/j.seppur.2013.04.012 Li SP, Han JY, Sun P, Wu GY, Bai XY. 2014. Effect of SP-A/B in lipoic acid on acute paraquat poisoning. World J Emerg Med. 5(1):57-62. https://doi.org/10.5847/wjem.j.issn.1920-8642.2014.01.010 Ito M, Hori Y, Fujisawa M, Oda A, Katsuyama S, Hirose Y, Yoshioka T. 2005. Rapid analysis method for paraquat and diquat in the serum using ion-pair high-performance liquid chromatography. Biol Pharm Bull. 28(4):725-728. https://doi.org/10.1248/bpb.28.725 Ministerio de la Protección Social, Ministerio de Ambiente, Vivienda y Desarrollo Territorial. 2007. Resolución 2115 de 2007, Por medio de la cual se señalan características, instrumentos básicos y frecuencias del sistema de control y vigilancia para la calidad del agua para consumo humano; [consultado 2015 abr 28]. https://www.minambiente.gov.co/images/GestionIntegraldelRecursoHidrico/pdf/Legislaci%C3%B3n_del_agua/Resoluci%C3%B3n_2115.pdf. Monk PMS, Turner C, Akhtar SP. 1999. Electrochemical behaviour of methyl viologen in a matrix of paper. Electrochim Acta. 44(26):4817-4826. https://doi.org/10.1016/S0013-4686(99)00225-X Ni Y, Qiu P, Kokot S. 2004. Simultaneous determination of three organophosphorus pesticides by differential pulse stripping voltammetry and chemometrics. Anal Chim Acta. 516(1-2):7-17. https://doi.org/10.1016/j.aca.2004.04.007 Paixao P, Costa P, Bugalho T, Fidalgo C, Pereira LM. 2002. Simple method for determination of paraquat in plasma and serum of human patients by high-performance liquid chromatography. J Chromatogr B. 775(1):109-113. https://doi.org/10.1016/S1570-0232(02)00245-3 Petersen IL, Tomasi G, Sørensen H, Boll ES, Bruun HC, Christensen JH. 2011. The use of environmental metabolomics to determine glyphosate level of exposure in rapeseed (Brassica napus L.) seedlings. Environ Pollut. 159(10):3071-3077. https://doi.org/10.1016/j.envpol.2011.04.005 Rai MK, Das JV, Gupta VK. 1997. A sensitive determination of paraquat by spectrophotometry. Talanta. 45(2):343-348. https://doi.org/10.1016/S0039-9140(97)00136-7 Jan MR, Shah J, Muhammad M, Ara B. 2009. Glyphosate herbicide residue determination in samples of environmental importance using spectrophotometric method. J Hazard Mater. 169(1-3):742-745. https://doi.org/10.1016/j.jhazmat.2009.04.003 Rühling I, Schäfer H, Ternes W. 1999. HPLC online reductive scanning voltammetric detection of diquat, paraquat and difenzoquat with mercury electrodes. Fresenius J Anal Chem. 364(6):565-569 https://doi.org/10.1007/s002160051387 Saad B, Ariffin M, Saleh MI. 1998. Flow injection potentiometric determination of paraquat in formulations and biological samples. Talanta. 47(5):1231-1236. https://doi.org/10.1016/S0039-9140(98)00213-6 Sánchez-Bayo F, Hyne RV, Desseille KL. 2010. An amperometric method for the detection of amitrole, glyphosate and its aminomethyl-phosphonic acid metabolite in environmental waters using passive samplers. Anal Chim Acta. 675(2):125-131. https://doi.org/10.1016/j.aca.2010.07.013 Sierra EV, Méndez MA, Sarria VM, Cortés, MT. 2008. Electrooxidación de glifosato sobre electrodos de níquel y cobre. Quím Nova. 31(2):220-226. https://doi.org/10.1590/S0100-40422008000200006 Songa EA, Arotiba OA, Owino JH, Jahed N, Baker PG, Iwuoha EI. 2009. Electrochemical detection of glyphosate herbicide using horseradish peroxidase immobilized on sulfonated polymer matrix. Bioelectrochemistry. 75(2):117-123. https://doi.org/10.1016/j.bioelechem.2009.02.007 Souza D, Machado SAS. 2005. Electrochemical detection of the herbicide paraquat in natural water and citric fruit juices using microelectrodes. Anal Chim Acta. 546(1):85-91. https://doi.org/10.1016/j.aca.2005.05.020 Suntres ZE. 2002. Role of antioxidants in paraquat toxicity. Toxicology. 180(1):65-77. https://doi.org/10.1016/S0300-483X(02)00382-7 Taguchi VY, Jenkins SW, Crozier PW, Wang DT. 1998. Determination of diquat and paraquat in water by liquid chromatography (electrospray ionization) mass spectrometry. J Am Soc Mass Spectrom. 9(8):830-839. https://doi.org/10.1016/S1044-0305(98)00043-9 Teófilo RF, Reis EL, Reis C, Silva GA, Paiva JF, Kubota LT. 2008. Glyphosate determination in soil, water and vegetables using DPV optimized by response surface methodology. Portugaliae Electrochimica Acta. 26(4):325-337. https://doi.org/10.4152/pea.200804327 Teófilo RF, Reis EL, Reis C, Silva GA, Kubota LT. 2004. Experimental design employed to square wave voltammetry response optimization for the glyphosate determination. J Braz Chem Soc. 15(6):865-871. https://doi.org/10.1590/S0103-50532004000600013 Tonle IK, Letaief S, Ngameni E, Walcarius A, Detellier C. 2011. Square wave voltammetric determination of lead(II) ions using a carbon paste electrode modified by a thiol-functionalized kaolinite. Electroanalysis. 23(1):245-252. https://doi.org/10.1002/elan.201000467 Tseng S-H, Lo Y-W, Chang P-C, Chou S-S, Chang H-M. 2004. Simultaneous quantification of glyphosate, glufosinate, and their major metabolites in rice and soybean sprouts by gas chromatography with pulsed flame photometric detector. J Agric Food Chem. 52(13):4057-4063. https://doi.org/10.1021/jf049973z Vega D, Agüí L, González-Cortés A, Yánez-Sedeño P, Pingarrón JM. 2007. Voltammetry and amperometric detection of tetracyclines at multi-wall carbon nanotube modified electrodes. Anal Bioanal Chem. 389(3):951-958. https://doi.org/10.1007/s00216-007-1505-70


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem