Mostrar el registro sencillo del ítem

Fotosíntesis y rendimiento de biomasa en ají, rábano y maíz sometidos a agua tratada magnéticamente

dc.creatorOspina-Salazar, Daniel Iván
dc.creatorBenavides Bolaños, Jhony Armando
dc.creatorZúñiga-Escobar, Orlando
dc.creatorMuñoz-Perea, Carlos Germán
dc.date2018-03-05
dc.date.accessioned2020-08-04T20:35:53Z
dc.date.available2020-08-04T20:35:53Z
dc.identifierhttp://revista.corpoica.org.co/index.php/revista/article/view/537
dc.identifier10.21930/rcta.vol19_num2_art:537
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/4628
dc.descriptionThe aim of this study was to assess the effect of magnetically treated water (MTW) on physiological parameters of three species: Tabasco pepper, red radish and yellow maize. Half of the plants per species were irrigated with normal tap water and the other half with tap water treated with a magnetic device. Photosynthesis, biomass, and mineral content (the latter only in Tabasco pepper fruits) were measured. All the species grown under MTW increased their photosynthetic rate and stomatal conductance. Fluorescence parameters as Fv /Fm and non-photochemical quenching remained unchanged among the species tested. In Tabasco pepper, MTW produced higher yield measured as aerial biomass, fruits per plant and leaf area; moreover, nitrogen and divalent cation content in fruits increased as well. In addition, there was a partial positive relation between leaf area and fruit yield (r2=0.52 for control and 0.30 for MTW). By contrast, there was an augment only in cob weight and grains per cob in maize plants, whereas radish plants showed a non-significant loss in total biomass. The higher biomass accumulation observed in Tabasco pepper and maize plants is attributed to a higher leaf area and/or carbon assimilation. Since chlorophyll fluorescence was unaffected, we propose that MTW does not trigger any change in the water-oxidizing complex of photosystem II (PSII). Moreover, the lack of response of several variables among the species tested showed that MTW might have interspecific effects. Despite the latter, this technology can be an alternative to improve crop yield, particularly in Tabasco pepper.en-US
dc.descriptionEn este estudio se evaluó el efecto del agua tratada magnéticamente (ATM) en parámetros fisiológicos de ají Tabasco, rábano rojo y maíz amarillo. La mitad de las plantas de las tres especies se regaron con agua normal del acueducto, y la otra con agua tratada a través de un dispositivo magnético. Se midieron la fotosíntesis, la biomasa y el contenido mineral (este último solo en frutos de ají Tabasco). Todas las especies cultivadas con ATM aumentaron su tasa fotosintética y su conductancia estomática. Los parámetros de fluorescencia, como la fluorescencia variable (Fv /Fm) y la extinción no fotoquímica, permanecieron sin cambios en las especies evaluadas. En el ají Tabasco, el agua con tratamiento favoreció un mayor rendimiento, en parámetros como biomasa aérea, frutos por planta y área foliar, incrementándose también el contenido de nitrógeno y cationes divalentes en frutos. Además, hubo una relación parcialmente positiva entre el área foliar y el rendimiento de frutos por planta (r2=0,52 en el control y 0,30 con ATM). En contraste, en las plantas de maíz solo hubo un aumento en el peso y en los granos por mazorca, mientras que las de rábano mostraron una pérdida no significativa en la biomasa total. La mayor acumulación de biomasa observada en las plantas de ají Tabasco y maíz se atribuye a una mayor área foliar o a la asimilación de carbono. Debido a que la fluorescencia de la clorofila no se alteró, se propone que el ATM no provoca ningún cambio en el complejo de oxidación del agua del fotosistema II. Por otra parte, la falta de respuesta de algunas variables en las tres especies mostró que el ATM puede tener efectos interespecíficos. A pesar de lo anterior, esta tecnología puede ser una alternativa para mejorar el rendimiento de los cultivos, en particular en del ají Tabasco.es-ES
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languagespa
dc.languageeng
dc.publisherCorporación Colombiana de Investigación Agropecuaria (Agrosavia)es-ES
dc.relationhttp://revista.corpoica.org.co/index.php/revista/article/view/537/536
dc.relationhttp://revista.corpoica.org.co/index.php/revista/article/view/537/535
dc.rightsDerechos de autor 2018 Corpoica Ciencia y Tecnología Agropecuariaes-ES
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0/deed.eses-ES
dc.sourceCiencia y Tecnología Agropecuaria; Vol. 19 No. 2 (2018); 291-305en-US
dc.sourceCiencia & Tecnología Agropecuaria; Vol. 19 Núm. 2 (2018); 291-305es-ES
dc.sourcerevista Corpoica Ciência e Tecnologia Agropecuária; v. 19 n. 2 (2018); 291-305pt-BR
dc.source2500-5308
dc.source0122-8706
dc.source10.21930/rcta.vol19-num2
dc.subjectAgro-technologyen-US
dc.subjectbiophysicsen-US
dc.subjectgas exchangeen-US
dc.subjectcrop yield.en-US
dc.titlePhotosynthesis and biomass yield in Tabasco pepper, radish and maize subjected to magnetically treated wateren-US
dc.titleFotosíntesis y rendimiento de biomasa en ají, rábano y maíz sometidos a agua tratada magnéticamentees-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.citationsAbou El-Yazied, A., El-Gizawy, A. M., Khalf, S. M., El-Satar, A., & Shalaby, O. A. (2012). Effect of magnetic field treatments for seeds and irrigation water as well as N, P and K levels on productivity of tomato plants. Journal of Applied Sciences Research, 8(4), 2088-2099. Retrieved from http://www.aensiweb.com/old/jasr/jasr/2012/2088-2099.pdf Aly, M. A., Thanaa, M. E., Osman, S. M., & Abdelhamed, A. A. (2015). Effect of magnetic irrigation water and some anti-salinity substances on the growth and production of Valencia orange. Middle East Journal of Agriculture Research, 4(1), 88-98. Retrieved from http://www.curresweb.com/mejar/mejar/2015/88-98.pdf Baker, N. R. (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89-113. https://doi.org/10.1146/annurev.arplant.59.032607.092759 Bavec, F., & Bavec, M. (2002). Effects of plant population on leaf area index, cob characteristics and grain yield of early maturing maize cultivars (FAO 100-400). European Journal of Agronomy, 16(2), 151-159. https://doi.org/10.1016/S1161-0301(01)00126-5 Cai, R., Yang, H., He, J., & Zhu, W. (2009). The effects of magnetic fields on water molecular hydrogen bonds. Journal of Molecular Structure, 938(1-3), 15-19. https://doi.org/10.1016/j.molstruc.2009.08.037 Chang, K. T., & Weng, C. I. (2006). The effect of an external magnetic field on the structure of liquid water using molecular dynamics simulation. Journal of Applied Physics, 100(4), 1-6. https://doi.org/10.1063/1.2335971 Dai, Y., Shen, Z., Liu, Y., Wang, L., Hannaway, D., & Lu, H. (2009). Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg. Environmental and Experimental Botany, 65(2-3), 177-182. https://doi.org/10.1016/j.envexpbot.2008.12.008 Del Amor, F. M. (2006). Growth, photosynthesis and chlorophyll fluorescence of sweet pepper plants as affected by the cultivation method. Annals of Applied Biology, 148(2), 133-139. https://doi.org/10.1111/j.1744-7348.2006.00048.x El-Sayed, H., & El-Sayed, A. (2014). Impact of magnetic water irrigation for improve the growth, chemical composition and yield production of broad bean (Vicia faba L.) plant. American Journal of Experimental Agriculture, 4(4), 476-496. https://doi.org/10.9734/AJEA/2014/7468 Graber, E. R., Meller-Harel, Y., Kolton, M., Cytryn, E., Silber, A., Rav-David D., … Elad, Y. (2010). Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil, 337(1), 481-496. https://doi.org/10.1007/s11104-010-0544-6 Grewal, H. S., & Maheshwari, B. L. (2011). Magnetic treatment of irrigation water and snow pea and chickpea seeds enhances early growth and nutrient contents of seedlings. Bioelectromagnetics, 32(1), 58-65. https://doi.org/10.1002/bem.20615 Guo, Y. Z., Yin, D. C., Cao, H. L., Shi, J. Y., Zhang, C. Y., Liu, Y. M., … Shang, P. (2012). Evaporation rate of water as a function of a magnetic field and field gradient. International Journal of Molecular Sciences, 13(12), 16916-16928. https://doi.org/10.3390/ijms131216916 Hager, M., Hermann, M., Biehler, K., Krieger-Liszkay, A., & Bock, R. (2002). Lack of the small plastid-encoded PsbJ polypeptide results in a defective water-splitting apparatus of photosystem II, reduced photosystem I levels, and hypersensitivity to light. Journal of Biological Chemistry, 277(16), 14031-14039. https://doi.org/10.1074/jbc.M112053200 Hozayn, M., Abd El Monem, A. A., Abdelraouf, R. E., & Abdalla, M. (2013). Do magnetic water affect water efficiency, quality and yield of sugar beet (Beta vulgaris L.) plant under arid regions conditions? Journal of Agronomy, 12(1), 1-10. https://doi.org/10.3923/ja.2013.1.10 Huez-López, M. A., Ulery, A. L., Samani, Z., Picchioni, G., & Flynn R. P. (2011). Response of chile pepper (Capsicum annuum L.) to salt stress and organic and inorganic nitrogen sources: III. Ion uptake and translocation. Tropical and Subtropical Agroecosystems, 14(3), 765-776. Retrieved from http://www.redalyc.org/articulo.oa?id=93921493009 Kang, J. G., & van Iersel, M. W. (2004). Nutrient solution concentration affects shoot: root ratio, leaf area ratio, and growth of subirrigated salvia (Salvia splendens). HortScience, 39(1), 49-54. https://doi.org/10.21273/HORTSCI.39.1.49 Khoshravesh, M., Mostafazadeh-Fard, B., Mousavi, S. F., & Kiani, A. R. (2011). Effects of magnetized water on the distribution pattern of soil water with respect to time in trickle irrigation. Soil Use and Management, 27(4), 515-522. https://doi.org/10.1111/j.1475-2743.2011.00358.x Maheshwari, B. L., & Grewal, H. S. (2009). Magnetic treatment of irrigation water: its effects on vegetable crop yield and water productivity. Agricultural Water Management, 96(8), 1229-1236. https://doi.org/10.1016/j.agwat.2009.03.016 Mahmood, S., & Usman, M. (2014). Consequences of magnetized water application on maize seed emergence in sand culture. Journal of Agricultural Science and Technology, 16(1), 47-55. Retrieved from http://jast.modares.ac.ir/article_10299_efbe8d29730f20e8a818009feb1719d5.pdf Moussa, H. R. (2011). The impact of magnetic water application for improving common bean (Phaseolus vulgaris L.) production. New York Science Journal, 4(6):15 - 20. Noran, R., Shani, U., & Israel, L. (1996). The effect of irrigation with magnetically treated water on the translocation of minerals in the soil. Magnetic and Electric Separation, 7(2), 109-122. https://doi.org/10.1155/1996/46596 Otsuka, I., & Ozeki, S. (2006). Does magnetic treatment of water change its properties? The Journal of Physical Chemistry B., 110(4), 1509-1512. https://doi.org/10.1021/jp056198x Pang, X. F., & Deng, B. (2008). Investigation of changes in properties of water under the action of a magnetic field. Science in China Series G: Physics, Mechanics and Astronomy, 51(11), 1621-1632. https://doi.org/10.1007/s11433-008-0182-7 Pfündel, E. (1998). Estimating the contribution of photosystem I to total leaf chlorophyll fluorescence. Photosynth Research, 56(2), 185-195. https://doi.org/10.1023/A:1006032804606 Putti, F., Almeida, L., Klar, A., Ferreira da Silva, J., Pires, C. & Ludwig, R. (2015). Response of lettuce crop to magnetically treated irrigation water and different irrigation depths. African Journal of Agricultural Research, 10(22), 2300-2308. https://doi.org/10.5897/AJAR2015.9616 Smith, S., McLeod, B. R., Liboff, A. R., & Cooksey, K. (1987). Calcium cyclotron resonance and diatom motility. Bioelectromagnetics, 8(3), 215-227. https://doi.org/10.1002/bem.2250080302 Szcześ, A., Chibowski, E., Hołysz, L., & Rafalski, P. (2011). Effects of static magnetic field on water at kinetic condition. Chemical Engineering and Processing: Process Intensification, 50(1), 124-127. https://doi.org/10.1016/j.cep.2010.12.0050


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem