Mostrar el registro sencillo del ítem

Efecto de la especie y la edad de rebrote en el perfil de ácidos grasos de leguminosas y arbustivas tropicales;
Efeito da espécie e da idade de rebrotação no perfil de ácidos graxos de leguminosas e arbustivas tropicais

dc.creatorMojica-Rodríguez, José Edwin
dc.creatorCastro-Rincón, Edwin
dc.creatorCarulla-Fornaguera, Juan
dc.creatorLascano-Aguilar, Carlos Eduardo
dc.date2017-08-31
dc.date.accessioned2020-08-04T20:36:39Z
dc.date.available2020-08-04T20:36:39Z
dc.identifierhttp://revista.corpoica.org.co/index.php/revista/article/view/738
dc.identifier10.21930/rcta.vol18_num3_art:738
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/4659
dc.descriptionThe effect of three regrowth ages (4, 8 and 12 weeks) on forage yield, nutritional quality and fatty acid profile were evaluated in herbaceous legumes: Clitoria ternatea, Pueraria phaseoloides, Canavalia brasiliensis,Centrosema molle, Centrosema macrocarpum,Alysicarpus vaginalis, y Lablab purpureus; in shrubby legumes: Cratylia argentea, Gliricidia sepium,Desmodium velutinum, Cajanus cajan, Leucaena leucocephala (Fabaceae); and in a non-leguminous shrub: Moringa oleifera (Moringaceae). A split-plot design with random blocks was used, in which the forage species was the main plot and the regrowth age the subplot. The main fatty acids found in the species were palmitic acid (C16:0), linolenic acid (C18:3) and linoleic acid (C18:2). However, the fatty acid concentration differed between herbaceous and shrubby legumes compared to non-leguminous species, and decreased with regrowth age in both groups. The herbaceous legumes evaluated had a higher C18:2/ C18:3 proportion than shrubby legumes, which could in turn result in a higher conjugated linoleic acid (CLA) content in milk fat. The legume Cajanus cajan showed the highest (p<0.05) linolenic acid (C18:3) and CLA precursors content in the three regrowth ages evaluated, suggesting that its use as bovine feed in dual-purpose systems can result in higher c9 t11 CLA concentrations in milk fat compared to other speciesen-US
dc.descriptionSe evaluó el efecto de tres edades de rebrote (4, 8 y 12 semanas) sobre la producción de forraje, calidad nutricional y perfil de ácidos grasos en leguminosas herbáceas: Clitoria ternatea, Pueraria phaseoloides, Canavalia brasiliensis, Centrosema molle, Centrosema macrocarpum, Alysicarpus vaginalis y Lablab purpureus; en leguminosas arbustivas: Cratylia argentea, Gliricidia sepium, Desmodium velutinum, Cajanus cajan y Leucaena leucocephala; y en una arbustiva no leguminosa: Moringa oleifera (Moringaceae). Se utilizó un diseño de parcelas divididas con bloques al azar, en el cual la parcela principal fue la especie forrajera y la subparcela la edad de rebrote. Los principales ácidos grasos presentes en las especies fueron el ácido palmítico (C16:0), ácido linolénico (C18:3) y linoleico (C18:2). Sin embargo, en las leguminosas herbáceas y arbustivas, el contenido de ácidos grasos fue diferente y disminuyó con la edad de rebrote en los dos grupos. La relación C18:2/C18:3 fue mayor en las leguminosas herbáceas que en las arbustivas, lo cual podría resultar en una mayor concentración de ácido linoleico conjugado (ALC) en la grasa de la leche. La leguminosa Cajanus cajan presentó el mayor (p<0,05) contenido de ácido linolénico (C18:3) y de precursores de ALC en las tres edades de rebrote evaluadas, lo cual sugiere que su uso en la alimentación de bovinos en sistemas de doble propósito resultaría en concentraciones altas de ALC c9 t11 en la grasa de la leche, en comparación con otras especies.es-ES
dc.descriptionAvaliou-se o efeito de três idades de rebrotação (4, 8 e 12 semanas) sobre a produção de forragem, qualidade nutricional e perfil de ácidos graxos em leguminosas herbáceas: Clitoria ternatea, Pueraria phaseoloides,Canavalia brasiliensis, Centrosema molle, Centrosema macrocarpum, Alysicarpus vaginalis, Lablab purpureus,leguminosas arbustivas: Cratylia argentea, Gliricidia sepium, Desmodium velutinum, Cajanus cajan,Leucaena leucocephala (Fabaceae) e uma arbustiva não leguminosa: Moringa oleifera (Moringaceae). Utilizou-se um desenho de parcelas divididas com blocos aleatoriamente em que a parcela principal foi a espécie forrageira e a subparcela foi a idade de rebrotação. Os principais ácidos graxos presentes nas espécies foram o ácido palmítico (C16:0), ácido linolênico (C18:3) e o linoleico (C18:2). No entanto, nas leguminosas herbáceas e arbustivas, o conteúdo de ácidos graxos foi diferente e diminuiu com a idade do rebrotação nos dois grupos. A relação C18:2/C18:3 foi maior nas leguminosas herbáceas do que nas arbustivas, o que poderia resultar em uma maior concentração de ácido linoleico conjugado (ALC) na gordura do leite. A leguminosa Cajanus cajan apresentou o maior (p<0,05) conteúdo de ácido linolénico (C18:3) e de precursores de ALCnas três idades de rebrotação avaliadas, o que sugere que seu uso na alimentação de bovinos em sistemas de dupla aptidão resultaria em concentrações mais altas de ALC c9 t11 na gordura do leite em comparação com outras espécies.pt-BR
dc.formatapplication/pdf
dc.languagespa
dc.publisherCorporación Colombiana de Investigación Agropecuaria (Agrosavia)es-ES
dc.relationhttp://revista.corpoica.org.co/index.php/revista/article/view/738/479
dc.rightshttps://creativecommons.org/licenses/by-nc/4.0es-ES
dc.sourceCiencia y Tecnología Agropecuaria; Vol. 18 No. 3 (2017); 463-477en-US
dc.sourceCiencia & Tecnología Agropecuaria; Vol. 18 Núm. 3 (2017); 463-477es-ES
dc.sourcerevista Corpoica Ciência e Tecnologia Agropecuária; v. 18 n. 3 (2017); 463-477pt-BR
dc.source2500-5308
dc.source0122-8706
dc.source10.21930/rcta.vol18-num3
dc.subjectFatty acidsen-US
dc.subjectAnimal feedingen-US
dc.subjectForageen-US
dc.subjectMilken-US
dc.subjectRumiantsen-US
dc.subjectácidos grasoses-ES
dc.subjectalimentación de los animaleses-ES
dc.subjectforrajeses-ES
dc.subjectlechees-ES
dc.subjectrumiantees-ES
dc.subjectAlimentación y nutrición animales-ES
dc.subjectácido gordopt-BR
dc.subjectalimentação dos animaispt-BR
dc.subjectforragempt-BR
dc.subjectleitept-BR
dc.subjectruminantept-BR
dc.titleEfecto de la especie y la edad de rebrote en el perfil de ácidos grasos de leguminosas y arbustivas tropicalesen-US
dc.titleEfecto de la especie y la edad de rebrote en el perfil de ácidos grasos de leguminosas y arbustivas tropicaleses-ES
dc.titleEfeito da espécie e da idade de rebrotação no perfil de ácidos graxos de leguminosas e arbustivas tropicaispt-BR
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.citationsAllakhverdiev, S. I. (2009). Regulatory roles in photosynthesis of unsaturated fatty acids in membrane lipids. In H. Wada, & N. Murata (Eds.), Lipids in photosynthesis: essential and regulatory functions (pp. 265-282). Dordrecht, the Netherlands: Springer. https://doi.org/10.1007/978-90-481-2863-1_17 Allen, M. S. (2000). Effects of diet on short-term regulation of feed intake by lactating dairy cattle. Journal of Dairy Science, 83(7), 1598-1624. https://doi.org/10.3168/jds.S0022-0302(00)75030-2 Association of Official of Analytical Chemistry [AOAC]. (2010). Official Methods of Analysis (18th ed.). Maryland: AOAC International. Belury, M. A. (2002). Dietary conjugated acid linoleic in health: physiological effects and mechanism of action. Annual Review of Nutrition, 22, 505-531. https://doi.org/10.1146/annurev.nutr.22.021302.121842 Boufaïed, H., Chouinard, P. Y., Tremblay, G. F., Petit, H. V., Michaud, R., & Belanger, G. (2003). Fatty acids in forages. I. Factors affecting concentrations. Canadian Journal of Animal Science, 83(3), 501-511. https://doi.org/10.4141/A02-098 Castillo, J. A., Olivera, M., Pabón, M. L., Ribeiro, C. V., Daza, E. E., & Carulla, J. E. (2004). Kynetics and thermodynamics on the in vitro biohydrogenation on linoleic acid, alpha linoleic acid and their combinations. Conference paper presented at 51st Reunión Anual de Sociedad Brasilera de Zootecnia, Barra dos Coqueiros, Brasil. Chilliard, Y., Ferlay, A., & Doreau, M. (2001). Effect of different types of forages, animal fat or marine oils in cow's diet on milk fat secretion and composition, especially conjugated linoleic acid (CLA) and polyunsaturated fatty acids. Livestock Production Science, 70(1-2), 31-48. https://doi.org/10.1016/S0301-6226(01)00196-8 Clapham, W., Foster, G., Neel, P., & Fedders, M. (2005). Fatty acid composition of traditional and novel forages. Journal of Agricultural and Food Chemistry, 53(26), 10068-10073. https://doi.org/10.1021/jf0517039 Collomb, M., Bütikofer, U., Sieber, R., Jeangros, B., & Bosset, J. O. (2002). Correlation between fatty acids in cows' milk fat produced in the Lowlands, Mountains and Highlands of Switzerland and botanical composition of the fodder. International Dairy Journal, 12(8), 661-666. https://doi.org/10.1016/S0958-6946(02)00062-6 Dhiman, T. R., Anand, G. R., Satter, L. D., & Pariza, M. W. (1999). Conjugated linoleic acid content of milk from cows fed different diets. Folia Biologica, 53(4), 2146-2156. https://doi.org/10.3168/jds.S0022-0302(99)75458-5 Dilzer, A., & Park, Y. (2012). Implication of conjugated linoleic acid (CLA) in human health. Critical reviews in food science and nutrition, 52(6), 488-513. https://doi.org/10.1080/10408398.2010.501409 Elgersma, A., Ellen, G., Van Der Horst, H., Muuse, B. G., Boer, H., & Tamminga, S. (2004). Influence of cultivar and cutting date on fatty acids composition of perennial ryegrass (Lollium perenne L.). Grass and Forage Science, 59, 104-105. https://doi.org/10.1111/j.1365-2494.2004.00408.x Ellis, K. A., Innocent, G., Grove-White, D., Cripps, P., McLeann, W. G., Howard, C. V., & Mihm, M. (2006). Comparing the fatty acid composition of organic and conventional milk. Journal of Dairy Science, 89(6), 1938-1950. https://doi.org/10.3168/jds.S0022-0302(06)72261-5 Garcés, R., & Mancha, M. (1993). One step lipid extraction and fatty acid methyl esters preparation from fresh plant tissue. Analytical Biochemistry, 211(1), 139-143. https://doi.org/10.1006/abio.1993.1244 Glasser, F., Doreau, M., Maxin, G., & Baumont, R. (2013). Fat and fatty acid content and composition forages. Animal Feed Science and Technology, 185(1-2), 19-34. https://doi.org/10.1016/j.anifeedsci.2013.06.010 Höjer, A., Adler, S., Martinsson, K., Jensen, S. K., Steinshamn, H., Thuen, E., & Gustavsson, A. (2012). Effect of legume - grass silage and alfa - tocopherol, beta carotene and retinol concentrations in organically produced bovine milk. Livestock Science, 148(3), 268-281. https://doi.org/10.1016/j.livsci.2012.06.016 Ip, C., Banni, S., Angioni, E., Carta, G., McGinley, J., Thompson, H. J., ... Bauman, D. (1999). Conjugated linoleic acid-enriched butter fat alters mammary gland morphogenesis and reduces cancer risk in rats. Journal of Nutrition, 129, 2135-2142. https://doi.org/10.1093/jn/129.12.2135 Jensen, G. (2002). The composition of bovine milk lipids: January 1995 to December 2000. Journal of Dairy Science, 85(2), 295-350. https://doi.org/10.3168/jds.S0022-0302(02)74079-4 Khan, N. A., Farooq, N. W., Ali, M., Suleman, M., Ahmad, N., Sulaiman, S. M., ... Hendriks, W. H. (2015). Effect of species and harvest maturity on the fatty acids profile of tropical forages. Journal of Animal and Plant Sciences, 25(3), 739-746. León, J., Pabón, M., & Carulla, J. (2011). Relación entre las características de la pastura y el contenido de ácido linoleico conjugado (ALC) en la leche. Revista Colombiana de Ciencias Pecuarias, 24, 63-73. Loor, J. J., Soriano, F. D., Lin, X., Herbein, J. H., & Polan, C. E. (2003). Grazing allowance after the morning or afternoon milking for lactating cows fed a total mixed ration (TMR) enhances trans11-18:1 and cis9, trans11-18:2 (rumenic acid) in milk fat to different extents. Animal Feed Science and Technology, 109(1-4), 105-119. https://doi.org/10.1016/S0377-8401(03)00175-5 Ørskov, E. R., Deb Howell, F. D., & Mould, F. (1980). The use of the nylon bag technique for the evaluation of feedstuffs. Tropical Animal Production, 5(3), 195-213. Pariza, M. W., & Hargreaves, W. A. (1985). A beef-derived mutagenesis modulator inhibits initiation of mouse epidermal tumors by 7, 12 dimethylbenz(a) antrazene. Carcinogenesis, 6(4), 591-593. https://doi.org/10.1093/carcin/6.4.591 SAS Institute Inc. (2011). SAS/STAT (Versión 9,3). SAS Institute: Cary, EE. UU. Shingfield, K. J., Bonnet, M., & Scollan, N. D. (2013). Recent developments in altering the fatty acid composition of ruminant-derived foods. Animal, 7(s1), 132-162. https://doi.org/10.1017/S1751731112001681 Steel, R., & Torrie, J. H. (1999). Correlación lineal. En R. G. D. Steel y J. H. Torrie (Eds.), Bioestadística: principios y procedimientos (2nd. ed., pp. 263-275). España: Mc Graw Hill. Stypinsky, P. (2011). The effect of grassland-based forages on milk quality and quantity [Special issue]. Agronomy Research, 9(2), 479-488. Toyes, E. A., Murillo, B. A., Espinoza, J. L., Carreun, L. P., & Palacios, A. E. (2013). Composición química y precursores de ácido vaccénico y ruménico en especies forrajeras en baja California Sur, México. Revista Mexicana de Ciencias Pecuarias, 4(3), 373-386. Van Soest, P. J., Roberton, J., & Lewis, M. (1991). Methods for dietary fiber, neutral fiber and no starch polysaccharides in relation to nutrition. Journal of Dairy Science, 74(10), 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2 Váradyová, Z., Kisidayova, S., Siroka, P., & Jalc, D. (2008). Comparison of fatty acid composition of bacterial and protozoal fractions in rumen fluid of sheep fed diet supplemented with sunflower, rapeseed and linseed oils. Animal Feed Science and Technology, 144(1-2), 44-54. https://doi.org/10.1016/j.anifeedsci.2007.09.033 Ward, A, T., Wittenberg, K. M., Froebe, H. M., Przybylski, R., & Malconlmson, L. (2003). Fresh forage and solin supplementation on conjugated linoleic acid levels in plasma and milk. Journal of Dairy Science, 86(5), 1742-1750. https://doi.org/10.3168/jds.S0022-0302(03)73760-6 White, S. L., Bertrand, J. A., Wade, M. R., Wade, M. R., Washburn, S. P., Greet, J. T., & Jenkins, T. C. (2001). Comparison of fatty acid content of milk from Jersey and Holstein Cows consuming pasture or a total mixed ration. Journal of Dairy Science, 84(10), 2295-2301. https://doi.org/10.3168/jds.S0022-0302(01)74676-0 Wiking, L., Theil, P., Nielsen, J., & Sorensen, M. (2010). Effect of grazing fresh legumes or feeding silage on fatty acids and enzymes involved in the synthesis of milk fat in dairy cows. Journal of Dairy Research, 77(3), 337-342. https://doi.org/10.1017/S002202991000021X Yamasaki, M., Kishihara, K., Ikeda, I., Sugano, M., & Yamada, K. (1999). A recommended esterification method for gas chromatographic measurement of conjugated linoleic acid. Journal of the American Oil Chemists' Society, 76(8), 933-938. https://doi.org/10.1007/s11746-999-0109-00


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem