Mostrar el registro sencillo del ítem

Espectroscopia de impedancia eléctrica aplicada al control de la calidad en la industria alimentaria

dc.creatorCaicedo-Eraso, Julio César
dc.creatorDíaz-Arango, Félix Octavio
dc.creatorOsorio-Alturo, Andrea
dc.date2019-12-27
dc.date.accessioned2020-08-04T20:36:44Z
dc.date.available2020-08-04T20:36:44Z
dc.identifierhttp://revista.corpoica.org.co/index.php/revista/article/view/951
dc.identifier10.21930/rcta.vol21_num1_art:951
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/4679
dc.descriptionElectrical impedance spectroscopy (EIE) is a technique used to analyze the electrical properties of the materials (including biological) inducing and measuring alternating electrical signals at different frequencies. Impedance measurements are employed to determine ripeness in fruits, identify adulterations in meat and dairy products, determine physical-chemical properties in all types of food matrices and even to quantify microorganisms present in food and on work surfaces. This technique is safe, non-invasive, fast, portable, inexpensive and easy to use; which makes it a method with great potential to be used in the food industry to monitor and control quality processes. This systematic review compiles scientific information published between 2012 and 2018 that describes the use of EIE applied to food quality control. Search was made in the ScienceDirect, Springer databases and the search engine Scholar Google, through the strategy: Spectroscopy electrical impedance AND Foods. After using a series of filters and a manual search, 53 articles and a thesis related to the topic were found. As a result of the systematic review, it was found that most of the studies focus on the quality assessment of meat and fishery products, as well as on the characterization of the changes generated during the thermal processes and ripening of fruits.en-US
dc.descriptionLa espectroscopia de impedancia eléctrica (EIE) es una técnica que permite analizar las propiedades eléctricas de materiales, incluso biológicos, al inducir señales eléctricas alternas a diferentes frecuencias y medir las señales de respuesta. Se ha utilizado para determinar la madurez en frutos, identificar adulteraciones en productos cárnicos y lácteos, determinar propiedades físico-químicas en todo tipo de matrices alimentarias e incluso para cuantificar microorganismos presentes en alimentos y en superficies de trabajo. Esta técnica es segura, no invasiva, rápida, portátil, de bajo costo y fácil de usar; lo que la convierte en un método con un gran potencial ser usado en la industria de alimentos para monitorear y controlar los procesos de calidad. La presente revisión sistemática recopila información científica publicada entre el año 2012 y 2018 que describe el uso EIE aplicada al control de calidad de alimentos. Se realizó una búsqueda en las bases de datos ScienceDirect, Springer y también en el buscador Google académico mediante la estrategia: Spectroscopy electrical impedance AND Foods. Aplicando una serie de filtros y una búsqueda manual se encontraron 53 artículos y una tesis relacionados con la temática. Se encontró que la mayoría de los estudios se centran en la evaluación de calidad de productos cárnicos y pesqueros, así como en la caracterización de los cambios generados durante los procesos térmicos y maduración de frutas.es-ES
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.formattext/xml
dc.languagespa
dc.languageeng
dc.publisherCorporación Colombiana de Investigación Agropecuaria (Agrosavia)es-ES
dc.relationhttp://revista.corpoica.org.co/index.php/revista/article/view/951/613
dc.relationhttp://revista.corpoica.org.co/index.php/revista/article/view/951/614
dc.relationhttp://revista.corpoica.org.co/index.php/revista/article/view/951/627
dc.rightsDerechos de autor 2019 Ciencia & Tecnología </br>Agropecuariaes-ES
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0/deed.eses-ES
dc.sourceCiencia y Tecnología Agropecuaria; Vol. 21 No. 1 (2020): Ciencia & Tecnología Agropecuaria; 1-20en-US
dc.sourceCiencia & Tecnología Agropecuaria; Vol. 21 Núm. 1 (2020): Ciencia & Tecnología Agropecuaria; 1-20es-ES
dc.sourcerevista Corpoica Ciência e Tecnologia Agropecuária; v. 21 n. 1 (2020): Ciencia & Tecnología Agropecuaria; 1-20pt-BR
dc.source2500-5308
dc.source0122-8706
dc.source10.21930/rcta.vol21-num1
dc.subjectAgroindustryen-US
dc.subjectanimal tissuesen-US
dc.subjectfood controlen-US
dc.subjectplant tissuesen-US
dc.subjectprocessed foodsen-US
dc.subjectAgroindustriaes-ES
dc.subjectalimentos procesadoses-ES
dc.subjectcontrol de alimentoses-ES
dc.subjecttejidos animleses-ES
dc.subjecttejidos vegetaleses-ES
dc.titleElectrical impedance spectroscopy applied to food industry quality controlen-US
dc.titleEspectroscopia de impedancia eléctrica aplicada al control de la calidad en la industria alimentariaes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.citations1. Ando, Y., Hagiwara, S., & Nabetani, H. (2017). Thermal inactivation kinetics of pectin methylesterase and the impact of thermal treatment on the texture, electrical impedance characteristics and cell wall structure of Japanese radish (Raphanus sativus L.). Journal of Food Engineering, 199, 9-18. doi: https://doi.org/10.1016/j.jfoodeng.2016.12.001. 2. Ando, Y., Maeda, Y., Mizutani, K., Wakatsuki, N., Hagiwara, S., & Nabetani, H. (2016). Effect of air-dehydration pretreatment before freezing on the electrical impedance characteristics and texture of carrots. Journal of Food Engineering, 169, 114-121. https://doi.org/10.1016/j.jfoodeng.2015.08.026. 3. Ando, Y., Mizutani, K., & Wakatsuki, N. (2014). Electrical impedance analysis of potato tissues during drying. Journal of Food Engineering, 121, 24-31. https://doi.org/10.1016/j.jfoodeng.2013.08.008. 4. Aristizábal-Botero, W. (2010). Electromagnetismo con aplicaciones a la biología y a la ingeniería. Manizales, Colombia: Centro editorial Universidad de Caldas. 5. Arora, P., Sindhu, A., Dilbaghi, N., & Chaudhury, A. (2011). Biosensors as innovative tools for the detection of food borne pathogens. Biosensors and Bioelectronics, 28(1), 1-12. https://doi.org/10.1016/j.bios.2011.06.002. 6. Bera, T. K., Bera, S., Kar, K., & Mondal, S. (2016). Studying the variations of complex electrical bio-impedance of plant tissues during boiling. Procedia Technology, 23, 248-255. doi: https://doi.org/10.1016/j.protcy.2016.03.024. 7. Bertemes-Filho, P., Valicheski, R., Pereira, R., & Paterno, A. (2010). Bioelectrical impedance analysis for bovine milk: preliminary results. Journal of Physics, 224(1), 1-4. https://doi.org/10.1088/1742-6596/224/1/012133. 8. Blanco-Díaz, M. T., Del Río-Celestino, M., Martínez-Valdivieso, D., & Font, R. (2014). Use of visible and near-infrared spectroscopy for predicting antioxidant compounds in summer squash (Cucurbita pepo ssp. pepo). Food chemistry, 164, 301-308. https://doi.org/10.1016/j.foodchem.2014.05.019. 9. Bondarenko, A. S., & Ragoisha, G. A. (2005). Inverse problem in potentiodynamic electrochemical impedance. A.L. Pomerantsev, (Ed.), Progress in chemometrics research. New York, NY: EE.UU.: Nova Science Publishers. 10. Boumya, W., Laghrib, F., Lahrich, S., Farahi, A., Achak, M., Bakasse, M., & El Mhammedi, M. A. (2017). Electrochemical impedance spectroscopy measurements for determination of derivatized aldehydes in several matrices. Heliyon, 3(10),1-18. doi: https://doi.org/10.1016/j.heliyon.2017.e00392. 11. Caravia, L., Collins, C., & Tyerman, S. (2015). Electrical impedance of Shiraz berries correlates with decreasing cell vitality during ripening. Australian journal of grape and wine research, 21(3), 430-438. https://doi.org/10.1111/ajgw.12157. 12. Chen, T.-H., Zhu, Y.-P., Wang, P., Han, M.-Y., Wei, R., Xu, X.-L., & Zhou, G.-H. (2016). The use of the impedance measurements to distinguish between fresh and frozen-thawed chicken breast muscle. Meat Science, 116, 151-157. doi: https://doi.org/10.1016/j.meatsci.2016.02.003. 13. Chowdhury, A., Kanti Bera, T., Ghoshal, D., & Chakraborty, B. (2017). Electrical impedance variations in banana ripening: an analytical study with electrical impedance spectroscopy. Journal of Food Process Engineering, 40(2),1-14. https://doi.org/10.1111/jfpe.12387. 14. Chowdhury, A., Singh, P., Bera, T. K., Ghoshal, D., & Chakraborty, B. (2017). Electrical impedance spectroscopic study of mandarin orange during ripening. Journal of Food Measurement and Characterization, 11(4), 1654-1664. https://doi.org/10.1007/s11694-017-9545-y. 15. Das, C., Chakraborty, S., Acharya, K., Bera, N. K., Chattopadhyay, D., Karmakar, A., & Chattopadhyay, S. (2017). FT-MIR supported Electrical Impedance Spectroscopy based study of sugar adulterated honeys from different floral origin. Talanta, 171, 327-334. https://doi.org/10.1016/j.talanta.2017.05.016. 16. De Jesús, C., Hernández-Coronado, G., Girón, J., Barat, J. M., Pagan, M. J., Alcañiz, M., . . . Grau, R. (2014). Classification of unaltered and altered dry-cured ham by impedance spectroscopy: A preliminary study. Meat Science, 98(4), 695-700. https://doi.org/10.1016/j.meatsci.2014.05.014. 17. Dong, J., Zhao, H., Xu, M., Ma, Q., & Ai, S. (2013). A label-free electrochemical impedance immunosensor based on AuNPs/PAMAM-MWCNT-Chi nanocomposite modified glassy carbon electrode for detection of Salmonella typhimurium in milk. Food Chemistry, 141(3), 1980-1986. doi: https://doi.org/10.1016/j.foodchem.2013.04.098. 18. Durante, G., Becari, W., Lima, F. A., & Peres, H. E. (2016). Electrical impedance sensor for real-time detection of bovine milk adulteration. IEEE Sensors Journal, 16(4), 861-865. https://doi.org/10.1109/JSEN.2015.2494624. 19. El Khaled, D., Castellano, N. N., Gazquez, J. A., García Salvador, R. M., & Manzano-Agugliaro, F. (2017). Cleaner quality control system using bioimpedance methods: a review for fruits and vegetables. Journal of Cleaner Production, 140, 1749-1762. https://doi.org/10.1016/j.jclepro.2015.10.096. 20. Farahi, A., El Gaini, L., Achak, M., El Yamani, S., El Mhammedi, M. A., & Bakasse, M. (2015). Interaction study of paraquat and silver electrode using electrochemical impedance spectroscopy: Application in milk and tomato samples. Food Control, 47, 679-685. doi: https://doi.org/10.1016/j.foodcont.2014.08.005. 21. Felice, C. J., Madrid, R. E., Olivera, J. M., Rotger, V. I., & Valentinuzzi, M. E. (1999). Impedance microbiology: quantification of bacterial content in milk by means of capacitance growth curves. Journal of Microbiological Methods, 35(1), 37-42. https://doi.org/10.1016/S0167-7012(98)00098-0. 22. Fernández-Segovia, I., Fuentes, A., Aliño, M., Masot, R., Alcañiz, M., & Barat, J. M. (2012). Detection of frozen-thawed salmon (Salmo salar) by a rapid low-cost method. Journal of Food Engineering, 113(2), 210-216. https://doi.org/10.1016/j.jfoodeng.2012.06.003. 23. Figueiredo-Neto, A., Cárdenas-Olivier, N., Rabelo-Cordeiro, E., & Pequeno de Oliveira, H. (2017). Determination of mango ripening degree by electrical impedance spectroscopy. Computers and Electronics in Agriculture, 143, 222-226. doi: https://doi.org/10.1016/j.compag.2017.10.018. 24. Fuentes, A., Masot, R., Fernández-Segovia, I., Ruiz-Rico, M., Alcañiz, M., & Barat, J. M. (2013). Differentiation between fresh and frozen-thawed sea bream (Sparus aurata) using impedance spectroscopy techniques. Innovative Food Science & Emerging Technologies, 19, 210-217. https://doi.org/10.1016/j.ifset.2013.05.001. 25. Fuentes, A., Vázquez-Gutiérrez, J. L., Pérez-Gago, M. B., Vonasek, E., Nitin, N., & Barrett, D. M. (2014). Application of nondestructive impedance spectroscopy to determination of the effect of temperature on potato microstructure and texture. Journal of Food Engineering, 133, 16-22. https://doi.org/10.1016/j.jfoodeng.2014.02.016. 26. García-Segovia, P., Andrés-Bello, A., & Martínez-Monzó, J. (2008). Textural properties of potatoes (Solanum tuberosum L., cv. Monalisa) as affected by different cooking processes. Journal of Food Engineering, 88(1), 28-35. https://doi.org/10.1016/j.jfoodeng.2007.12.001. 27. González-Araiza, J. (2014). Impedancia bio-electrica como técnica no-destructiva para medir la firmeza de la fresa (Fragaria x Ananassa Duch) y su relación con técnicas convencionales (Tesis doctoral). Universidad Politécnica de Valencia, Valencia, España. 28. Gram, L., & Dalgaard, P. (2002). Fish spoilage bacteria-problems and solutions. Current opinion in biotechnology, 13(3), 262-266. https://doi.org/10.1016/S0958-1669(02)00309-9. 29. Grossi, M., Di Lecce, G., Toschi, T. G., & Riccò, B. (2014). Fast and accurate determination of olive oil acidity by electrochemical impedance spectroscopy. IEEE Sensors Journal, 14(9), 2947-2954. https://doi.org/10.1109/JSEN.2014.2321323. 30. Grossi, M., Lanzoni, M., Pompei, A., Lazzarini, R., Matteuzzi, D., & Riccò, B. (2008). Detection of microbial concentration in ice-cream using the impedance technique. Biosensors and Bioelectronics, 23(11), 1616-1623. https://doi.org/10.1016/j.bios.2008.01.032. 31. Guermazi, M., Kanoun, O., & Derbel, N. (2014). Investigation of long time beef and veal meat behavior by bioimpedance spectroscopy for meat monitoring. IEEE Sensors Journal, 14(10), 3624-3630. https://doi.org/10.1109/JSEN.2014.2328858. 32. Hargin, K. D. (1996). Authenticity issues in meat and meat products. Meat Science, 43, S277-S289. https://doi.org/10.1016/0309-1740(96)00072-1. 33. Hernández-Chávez, J. F., González-Córdova, A. F., Sánchez-Escalante, A., Torrescano, G. R., Camou, J. P., & Vallejo-Cordoba, B. (2007). Técnicas analíticas para la determinación de la autenticidad de la carne y de los productos cárnicos procesados térmicamente. Nacameh, 2(1), 97-109. 34. Imaizumi, T., Tanaka, F., Hamanaka, D., Sato, Y., & Uchino, T. (2015). Effects of hot water treatment on electrical properties, cell membrane structure and texture of potato tubers. Journal of Food Engineering, 162(1), 56-62. https://doi.org/10.1016/j.jfoodeng.2015.04.003. 35. Jiménez, C., & León, D. E. (2009). Biosensores: Aplicaciones y perspectivas en el control y calidad de procesos y productos alimenticios. Vitae, 16(1), 144-155. 36. Jishu, T. Y., & Du Guangyuan, Z. (2012). Change of Electric Parameters and Physiological Parameters of Kiwi of Storage Period. Transactions of the Chinese Society for Agricultural Machinery, 1, 1-22. 37. Jorge, J., Pereira, J. C., Rodríguez, M., Barrios N., Oliva, D., & Antonio, J. (2018). Impedance spectroscopy in water/oil emulsions in a range of intermediate frequencies. INGENIERIA UC, 25(3), 388-395. 38. Joshi, R., Janagama, H., Dwivedi, H. P., Kumar, T. S., Jaykus, L.-A., Schefers, J., & Sreevatsan, S. (2009). Selection, characterization, and application of DNA aptamers for the capture and detection of Salmonella enterica serovars. Molecular and cellular probes, 23(1), 20-28. https://doi.org/10.1016/j.mcp.2008.10.006. 39. Juansah, J., Budiastra, I., Dahlan, K., & Seminar, K. (2014). Electrical properties of garut citrus fruits at low alternating current signal and its correlation with physicochemical properties during maturation. International journal of food properties, 17(7), 1498-1517. https://doi.org/10.1080/10942912.2012.723233. 40. Juansah, J., Budiastra, W., Dahlan, K., & Seminar, K. (2012). The prospect of electrical impedance spectroscopy as non-destructive evaluation of citrus fruits acidity. International Journal of Emerging Technology and Advanced Engineering, 2(11), 58-64. 41. Kaltenecker, P., Szöllösi, D., Friedrich, L., & Vozáry, E. (2013). Determination of salt content in various depth of pork chop by electrical impedance spectroscopy. Journal of Physics: Conference Series, 434(1), 1-5. https://doi.org/10.1088/1742-6596/434/1/012094. 42. Kertész, Á., Hlavácová, Z., Vozáry, E., & Staronová, L. (2015). Relationship between moisture content and electrical impedance of carrot slices during drying. International Agrophysics, 29(1), 61-66. https://doi.org/10.1515/intag-2015-0013. 43. Kuson, P., & Terdwongworakul, A. (2013). Minimally-destructive evaluation of durian maturity based on electrical impedance measurement. Journal of Food Engineering, 116(1), 50-56. https://doi.org/10.1016/j.jfoodeng.2012.11.021. 44. Leon, K., Domingo, M., Pedreschi, F., & Leon, J. (2006). Color measurement in L* a* b* units from RGB digital images. Food research international, 39(10), 1084-1091. https://doi.org/10.1016/j.foodres.2006.03.006. 45. Liu, J.T., Settu, K., Tsai, J.Z., & Chen, C.J. (2015). Impedance sensor for rapid enumeration of E. coli in milk samples. Electrochimica Acta, 182, 89-95. https://doi.org/10.1016/j.electacta.2015.09.029. 46. Long-Wu, Y. O., & Tagawa, A. (2008). Electrical impedance spectroscopy analysis of eggplant pulp and effects of drying and freezing-thawing treatments on its impedance characteristics. Journal of Food Engineering, 274-280. https://doi.org/10.1016/j.jfoodeng.2007.12.003. 47. Lopes, A. M., Machado, J. T., & Ramalho, E. (2017). On the fractional-order modeling of wine. European Food Research and Technology, 243(6), 921-929. https://doi.org/10.1007/s00217-016-2806-x. 48. Lopes, A. M., Machado, J. T., Ramalho, E., & Silva, V. (2018). Milk characterization using electrical impedance spectroscopy and fractional models. Food Analytical Methods, 11(3), 901-912. https://doi.org/10.1007/s12161-017-1054-4. 49. Masot, R. (2010). Desarrollo de un sistema de medida basado en espectroscopía de impedancia para la determinación de parámetros fisicoquímicos en alimentos (Tesis doctoral). Universidad Politécnica de Valencia, Valencia, España. 50. Mitcham, B., Cantwell, M., & Kader, A. (1996). Methods for determining quality of fresh commodities. Perishables handling newsletter, 85, 1-5. 51. Nakawajana, N., Terdwongworakul, A., & Teerachaichayut, S. (2016). Minimally destructive assessment of mangosteen translucency based on electrical impedance measurements. Journal of Food Engineering, 171, 137-144. doi: https://doi.org/10.1016/j.jfoodeng.2015.10.020. 52. Nakonieczna, A., Paszkowski, B., Wilczek, A., Szyplowska, A., & Skierucha, W. (2016). Electrical impedance measurements for detecting artificial chemical additives in liquid food products. Food Control, 66, 116-129. doi: https://doi.org/10.1016/j.foodcont.2016.01.044. 53. Nguyen, H. B., & Nguyen, L. T. (2015). Rapid and non-invasive evaluation of pork meat quality during storage via impedance measurement. International Journal of Food Science & Technology, 50(8), 1718-1725. https://doi.org/10.1111/ijfs.12847. 54. Ojeda, M., & Pire, R. (1997). Estrategias para estimar el nivel de maduración en uvas para vinificación. Bioagro, 9(1), 20-25. 55. Paredes, J., Becerro, S., & Arana, S. (2014). Label-free interdigitated microelectrode based biosensors for bacterial biofilm growth monitoring using Petri dishes. Journal of microbiological methods, 100, 77-83. https://doi.org/10.1016/j.mimet.2014.02.022. 56. Parlapani, F. F., Verdos, G. I., Haroutounian, S. A., & Boziaris, I. S. (2015). The dynamics of Pseudomonas and volatilome during the spoilage of gutted sea bream stored at 2° C. Food Control, 55, 257-265. https://doi.org/10.1016/j.foodcont.2015.03.004. 57. Pérez-Esteve, E., Fuentes, A., Grau, R., Fernández-Segovia, I., Masot, R., Alcañiz, M., & Barat, J. (2014). Use of impedance spectroscopy for predicting freshness of sea bream (Sparus aurata). Food Control, 35(1), 360-365. https://doi.org/10.1016/j.foodcont.2013.07.025. 58. Perez, C. (2014). Equipo de espectroscopia de Bioimpedancia eléctrica en el margen de 1kHz-1MHz (Tesis de Maestria). Universitat Politécnica de Cataluña, Barcelona, España. 59. Pliquett, U. (2010). Bioimpedance: a review for food processing. Food engineering reviews, 2(2), 74-94. https://doi.org/10.1007/s12393-010-9019-z. 60. Porras, D. P. N., Castillo, H. S. V., & Sanchez, S. A. M. (2010). Las biopelículas en la industria de alimentos. Biotecnología en el Sector Agropecuario y Agroindustrial: BSAA, 8(2), 118-128. 61. Rattan, N., & Ramaswamy, H. (2014). Comparison of free/bi-axial, fixed axial, end-over-end and static thermal processing effects on process lethality and quality changes in canned potatoes. LWT-Food Science and Technology, 58(1), 150-157. https://doi.org/10.1016/j.lwt.2014.02.056. 62. Rehman, M., Izneid, A., Basem, A., Abdullah, M. Z., & Arshad, M. R. (2011). Assessment of quality of fruits using impedance spectroscopy. International Journal of Food Science & Technology, 46(6), 1303-1309. https://doi.org/10.1111/j.1365-2621.2011.02636.x. 63. Rizo, A., Fuentes, A., Fernández-Segovia, I., Masot, R., Alcañiz, M., & Barat, J. M. (2013). Development of a new salmon salting-smoking method and process monitoring by impedance spectroscopy. LWT-Food Science and Technology, 51(1), 218-224. https://doi.org/10.1016/j.lwt.2012.09.025. 64. Rodriguéz, A. A, Uriarta, A. R., Palazuelos, R. C., & Pérez, C. (2012). Biología celular. México: Universidad Autónoma de Sinaloa. 65. Salazar-Muñoz, Y. (2004). Caracterizacion de tejidos cardiacos mediante métodos mínimamente invasivos y no invasivos basados en espectroscopia de impedancia eléctrica (Tesis doctoral). Universidad Politécnica de Cataluña, Barcelona. 66. Scandurra, G., Tripodi, G., & Verzera, A. (2013). Impedance spectroscopy for rapid determination of honey floral origin. Journal of Food Engineering, 119(4), 738-743. https://doi.org/10.1016/j.jfoodeng.2013.06.042. 67. Sharma, A., Bansod, B. K., & Thakur, R. (2017). Development of Moisture Prediction Model for Tea using Electrical Impedance Spectroscopy. International Journal of Advanced Engineering Research and Science, 4(2), 38-43. https://doi.org/10.22161/ijaers.4.2.8. 68. Sun, J., Zhang, R., Zhang, Y., Liang, Q., Li, G., Yang, N., . . . Guo, J. (2018). Classifying fish freshness according to the relationship between EIS parameters and spoilage stages. Journal of Food Engineering, 219, 101-110. doi: https://doi.org/10.1016/j.jfoodeng.2017.09.011. 69. Torres, R., Montes, E., Pérez, O., & Andrade, R. (2013). Relación del color y del estado de madurez con las propiedades fisicoquímicas de frutas tropicales. Información tecnológica, 24(3), 51-56. https://doi.org/10.4067/S0718-07642013000300007. 70. Tubia, I., Paredes, J., Pérez-Lorenzo, E., & Arana, S. (2018). Brettanomyces bruxellensis growth detection using interdigitated microelectrode based sensors by means of impedance analysis. Sensors and Actuators A: Physical, 269, 175-181. doi: https://doi.org/10.1016/j.sna.2017.11.009. 71. Vidacek, S., Janci, T., Brdek, Z., Udovicic, D., Marušic, N., Medic, H., . . . Lackovic, I. (2012). Differencing sea bass (Dicentrarchus labrax) fillets frozen in different conditions by impedance measurements. International Journal of Food Science & Technology, 47(8), 1757-1764. https://doi.org/10.1111/j.1365-2621.2012.03031.x. 72. Villa-García, M., Pedroza-Islas, R., Martin-Martínez, S., & Aguilar-Frutis, M. (2013). Espectroscopia de impedancia: un método rápido y eficiente para el monitoreo del crecimiento de Lactobacillus acidophilus. Revista mexicana de ingeniería química, 12(1), 57-64. 73. Wang, H., Palmer, J., & Flint, S. (2016). A rapid method for the nonselective enumeration of Yersinia enterocolitica, a foodborne pathogen associated with pork. Meat science, 113, 59-61. https://doi.org/10.1016/j.meatsci.2015.11.005. 74. Watada, A. E., Herner, R. C., Kader, A. A., Romani, R. J., & Staby, G. L. (1984). Terminology for the description of development stages of horticultural crops. HortScience, 19(1), 20-25. 75. Watanabe, T., Ando, Y., Orikasa, T., Kasai, S., & Shiina, T. (2018). Electrical impedance estimation for apple fruit tissues during storage using Cole-Cole plots. Journal of Food Engineering, 221, 29-34. https://doi.org/10.1016/j.jfoodeng.2017.09.028. 76. Watanabe, T., Ando, Y., Orikasa, T., Shiina, T., & Kohyama, K. (2017). Effect of short time heating on the mechanical fracture and electrical impedance properties of spinach (Spinacia oleracea L.). Journal of Food Engineering, 194, 9-14. https://doi.org/10.1016/j.jfoodeng.2016.09.001. 77. Yang, Y., Wang, Z.Y., Ding, Q., Huang, L., Wang, C., & Zhu, D.Z. (2013). Moisture content prediction of porcine meat by bioelectrical impedance spectroscopy. Mathematical and Computer Modelling, 58(3), 819-825. https://doi.org/10.1016/j.mcm.2012.12.020. 78. Yu, L., Zhang, Y., Hu, C., Wu, H., Yang, Y., Huang, C., & Jia, N. (2015). Highly sensitive electrochemical impedance spectroscopy immunosensor for the detection of AFB1 in olive oil. Food Chemistry, 176, 22-26. doi: https://doi.org/10.1016/j.foodchem.2014.12.030. 79. Zavadlav, S., Janci, T., Lackovic, I., Karlovic, S., Rogulj, I., & Vidacek, S. (2016). Assessment of storage shelf life of European squid (cephalopod: Loliginidae, Loligo vulgaris) by bioelectrical impedance measurements. Journal of Food Engineering, 184, 44-52. https://doi.org/10.1016/j.jfoodeng.2016.03.022. 80. Zhao, X., Zhuang, H., Yoon, S.-C., Dong, Y., Wang, W., & Zhao, W. (2017). Electrical impedance spectroscopy for quality assessment of meat and fish: A review on basic principles, measurement methods, and recent advances. Journal of Food Quality, 2017. https://doi.org/10.1155/2017/6370739. 81. Zia, A. I., Syaifudin, A. M., Mukhopadhyay, S., Yu, P., Al-Bahadly, I., Gooneratne, C. P., . . . Liao, T.-S. (2013). Electrochemical impedance spectroscopy based MEMS sensors for phthalates detection in water and juices. Journal of Physics, 439(1),1-18. https://doi.org/10.1088/1742-6596/439/1/012026. 82. Zywica, R., & Banach, J. K. (2015). Simple linear correlation between concentration and electrical properties of apple juice. Journal of Food Engineering, 158, 8-12. https://doi.org/10.1016/j.jfoodeng.2015.02.012.0


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem