Mostrar el registro sencillo del ítem

Evaluación de sacarosa y GA3 en un cultivo in vitro de brotes de Alpinia purpurata (Zingiberaceae)

dc.creatorSuarez Padrón, Isidro Elías
dc.creatorPérez Meza, Pablo Miguel
dc.creatorLopez Diaz, Claudia Marcela
dc.date2020-05-04
dc.date.accessioned2020-08-04T20:36:44Z
dc.date.available2020-08-04T20:36:44Z
dc.identifierhttp://revista.corpoica.org.co/index.php/revista/article/view/1193
dc.identifier10.21930/rcta.vol21_num2_art:1193
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/4682
dc.descriptionAlpinia purpurata is an ornamental plant species native to the Asia-Pacific with commercial potential due to its red inflorescence adapted to the northern Colombian coast; however, the lack of propagation protocols hinders commercial cultivation. To adjust a micropropagation protocol for clonal plant material production, the aim of this study was to evaluate the effect of sucrose and gibberellic acid (GA3) in the culture medium on the number of new shoots per explant, shoot length, root number, root length and number of leaves. Explants were cultured in semisolid MS (Murashige & Skoog) medium with sucrose (30, 45 and 60 mg/L) and GA3 (0.0; 0.25; 0.5; 0.75 and 1.0 mg/L). A factorial experimental design with two factors was employed, with 15 treatments, 10 replicates per treatment and 150 experimental units distributed with a completely randomized design. Cultures were stored five weeks at 25 °C with a 12 h photoperiod (40 μmol m-2 s-1). Anova and Tukey’s test allowed detecting the statistical effects of sucrose and GA3 supply for all variables. An increase in sucrose concentration resulted in a higher number of shoots, while an increase in GA3 induced longer shoots. Root length and leaf number decreased as GA3 and sucrose increased.en-US
dc.descriptionAlpinia purpurata es una planta ornamental nativa de las islas del Pacífico asiático con potencial por su inflorescencia roja, adaptada a las condiciones de la costa Atlántica colombiana; sin embargo, la falta de protocolos de propagación, evita su cultivo comercialmente. Con el interés ajustar un protocolo de micropropagación para la producción clonal de material de siembra, el presente estudio tuvo como objetivo, evaluar el efecto de la sacarosa y el ácido giberélico (GA3) en el medio de cultivo, sobre el número de nuevos brotes por explante, longitud de brotes, número de raíces, longitud de raíces y número de hojas. Los explantes fueron cultivados en medio semisólido ms (Murashige & Skoog, 1962) suplido con sacarosa (30, 45 y 60 mg/L) y combinados con GA3 (0,0; 0,25; 0,5; 0,75 y 1,0 mg/L). Se empleó un arreglo factorial con dos factores, 15 tratamientos y 10 repeticiones por tratamiento, para un total de 150 unidades experimentales distribuidas en un diseño completamente al azar. Los cultivos fueron almacenados cinco semanas a 25 °C con 12 h de fotoperíodo (40 μmol m-2 s-1). El Anova y la prueba de Tukey permitieron detectar que la sacarosa y GA3 afectaron significativamente todas las variables: el incremento en la concentración de sacarosa indujo mayor número de brotes, y los brotes en presencia de GA3 tuvieron una mayor longitud. Se observó una tendencia a disminuir la longitud de las raíces y el número de hojas en la medida en que se aumentó la dosis de sacarosa y GA3.es-ES
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.formattext/xml
dc.formattext/xml
dc.languagespa
dc.languageeng
dc.publisherCorporación Colombiana de Investigación Agropecuaria (Agrosavia)es-ES
dc.relationhttp://revista.corpoica.org.co/index.php/revista/article/view/1193/624
dc.relationhttp://revista.corpoica.org.co/index.php/revista/article/view/1193/640
dc.relationhttp://revista.corpoica.org.co/index.php/revista/article/view/1193/661
dc.relationhttp://revista.corpoica.org.co/index.php/revista/article/view/1193/662
dc.rightsDerechos de autor 2020 Ciencia & Tecnología Agropecuariaes-ES
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0/deed.eses-ES
dc.sourceCiencia y Tecnología Agropecuaria; Vol. 21 No. 2 (2020): Ciencia &Tecnología Agropecuariaen-US
dc.sourceCiencia & Tecnología Agropecuaria; Vol. 21 Núm. 2 (2020): Ciencia &Tecnología Agropecuariaes-ES
dc.sourcerevista Corpoica Ciência e Tecnologia Agropecuária; v. 21 n. 2 (2020): Ciencia &Tecnología Agropecuariapt-BR
dc.source2500-5308
dc.source0122-8706
dc.source10.21930/rcta.vol21-num2
dc.subjectInflorescenceen-US
dc.subjectmicropropagationen-US
dc.subjectornamental plantsen-US
dc.subjectplant growth substancesen-US
dc.subjectred gingeren-US
dc.subjectInflorescenciaes-ES
dc.subjectjengibre rojoes-ES
dc.subjectmicropropagaciónes-ES
dc.subjectplantas ornamentaleses-ES
dc.subjectsustancias de crecimiento vegetales-ES
dc.titleEvaluation of sucrose and GA3 in an in vitro shoot culture of Alpinia purpurata (Zingiberaceae): Sucrose and GA3 on Alpinia purpurata in vitro shoots.en-US
dc.titleEvaluación de sacarosa y GA3 en un cultivo in vitro de brotes de Alpinia purpurata (Zingiberaceae)es-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.citationsAli, S., Khan, N., Nouroz, F., Erum, S., Nasim, W., & Adnan Shadid, M. (2018). In vitro effects of GA3 on morphogenesis of CIP potato explants and acclimatization of plantlets in field. In Vitro Cellular and Developmental Biology-Plant, 54(1), 104-111. https://doi.org/10.1007/s11627-017-9874-x Augstein, F., & Carlsbecker, A. (2018). Getting to the roots: A developmental genetic view of root anatomy and function from Arabidopsis to lycophytes. Frontiers in Plant Science, 9(1410) 1-15. https://doi.org/10.3389/fpls.2018.01410 Ayano, M., Kani, T., Kojima, M., Sakakibara, H., Kitaoka, T., Kuroha, T., Angeles-Shim, R., Kitano, H., Nagai, K., & Ashikari, M. (2014). Gibberellin biosynthesis and signal transduction is essential for internode elongation Subburaman in deepwater rice. Plant Cell and Environment, 37(10), 2313-2324. https://doi.org/10.1111/pce.12377 Builes, M. (2003). Diagnóstico del mercado de los platanillos (Zingiberales) en el departamento de Antioquia [tesis de pregado]. Corporación Universitaria Lasallista. Brondani, G., de Wit Ondas, H., Baccarin, F., Natal, A., & de Almeida, M. (2012). Micropropagation of Eucalyptus benthamii to form a clonal micro-garden. In Vitro Cellular and Developmental Biology-Plant, 48(5), 478-487. https://doi.org/10.1007/s11627-012-9449-9 Camara, M., Vandenberghe, L., Rodríguez, C., Oliveira, J., Faulds, C., Bertrand, E., & Soccol, C. (2018). Current advances in gibberellic acid (GA3) production, patented technologies and potential applications. Planta, 248(5), 1049-1062. https://doi.org/10.1007/s00425-018-2959-x Cardoso, J., Sheng, L., & Teixeira da Silva, J. (2018). Micropropagation in the twenty-first century. Methods in Molecular Biology, 1815, 7-46. https://doi.org/10.1007/978-1-4939-8594-4_2 Carloni, E., Tommasino, E., López Colomba, E., Ribotta, A., Quiroga, M., & Griffa, S. (2017). In vitro selection and characterization of buffelgrass somaclones with different responses to water stress. Plant Cell, Tissue and Organ Culture, 130(2), 265-277. https://doi.org/10.1007/s11240-017-1220-9 Cassells A. (2012). Pathogen and biological contamination management in plant tissue culture: phytopathogens, vitro pathogens, and vitro pests. Methods in Molecular Biology, 877, 57-80. https://doi.org/10.1007/978-1-61779-818-4_6 Criley, R. (1989). Development of Heliconia and Alpinia in Hawaii: Cultivar selection and culture. Acta Horticulturae, 246, 247-258. https://doi.org/10.17660/ActaHortic.1989.246.30 De la Peña, G., & Illsley, C. (2001). Los productos forestales no maderables: su potencial económico, social y de conservación. https://geaac.org/images/stories/OM_prodforestnomaderablepotenciales_190510.pdf Dos Santos, D., Cardoso-Gustavson, P., & Nievola, C. (2017). Stem elongation of ornamental bromeliad in tissue culture depends on the temperature even in the presence of gibberellic acid. Acta Physiologiae Plantarum, 39, 230. https://doi.org/10.1007/s11738-017-2536-0 Estas son las flores que más exporta Colombia. (2018). El Tiempo. https://www.eltiempo.com/colombia/otras-ciudades/las-flores-que-mas-exporta-colombia-223144 Gabryszewska, E. (2011). Effect of various levels of sucrose, nitrogen salts and temperature on the growth and development of Syringa vulgaris L. shoots in vitro. Journal of Fruit and Ornamental Plant Research, 19(2), 133-148. Gao, Y., Wu, C., Piao, X., Hang, L. Gao, R., & Lian, M. (2018). Optimization of culture medium components and culture period for production of adventitious roots of Echinacea pallida (Nutt.) Nutt. Plant Cell, Tissue and Organ Culture, 135(2), 299-307. https://doi.org/10.1007/s11240-018-1464-z Gaspar, T., Kevers, C., Penel, C., Greppin, H., Reid, D., & Thorpe, T. (1996). Plant hormones and plant growth regulators in plant tissue culture. In Vitro Cellular and Developmental Biology-Plant, 32(4), 272-289. Han, K., Dharmawardhana, P., Arias, R., Ma, C., Busov, V., & Strauss, S. (2011). Gibberellin-associated cisgenes modify growth, stature and wood properties in Populus. Plant Biotechnology Journal, 9(2), 162-178. https://doi.org/10.1111/j.1467-7652.2010.00537.x Hansen, J. (1993). Field phenology of red ginger, Alpinia purpurata. Proceedings of the Florida State Horticultural Society, 106, 290-292. https://journals.flvc.org/fshs/article/view/92679/88871 Hartmann, H., Kester, D., Davies, F., & Geneve, R. (2002). Plant Propagation: Principles and Practices. Prentice-Hall. Hassan, M. (2017). In vitro conservation of date palm somatic embryos using growth-retardant conditions. En J. Al-Khayri, S. Jain & D. Johnson (Eds.), Date Palm Biotechnology Protocols Volume II. Methods in Molecular Biology (vol. 1638). Humana Press. https://doi.org/10.1007/978-1-4939-7159-6_6 Hazubska-Przybył, T., Kalemba, E., Ratajczak, E., & Bojarczuk, K. (2016). Effects of abscisic acid and an osmoticum on the maturation, starch accumulation and germination of Picea spp. somatic embryos. Acta Physiologiae Plantarum, 38, 59. https://doi.org/10.1007/s11738-016-2078-x Hesami, M., Daneshvar, M., & Yoosefzadeh-Najafabadi, M. (2018). An efficient in vitro shoot regeneration through direct organogenesis from seedling-derived petiole and leaf segments and acclimatization of Ficus religiosa. Journal of Forestry Research, 30(3) 807-815. https://doi.org/10.1007/s11676-018-0647-0 Hedden, P., & Sponsel, V. (2015). A century of gibberellin research. Journal of Plant Growth Regulation, 34(4), 740-760. https://doi.org/10.1007/s00344-015-9546-1 Hodge, A., Berta, G., Doussan, C., Merchan, F., & Crespi, M. (2009). Plant root growth, architecture and function. Plant and Soil, 321(1-2), 153-187. https://doi.org/10.1007/s11104-009-9929-9 Hoyos, J. (1998). Plantas tropicales ornamentales de tallo herbáceo. Sociedad de Ciencias Naturales La Salle. http://www.tecniciencia.com/tcl-PLANTAS-TROPICALES-ORNAMENTALES-DE-TALLO-HERBACEO-9802350346.php Illg, R., & Faria, R. (1995). Micropropagation of Alpinia purpurata from inflorescence buds. Plant Cell, Tissue and Organ Culture, 40(2), 183-185. https://doi.org/10.1007/BF00037673 Kane, M. (1996). Micropropagation from pre-existing meristems. En R. N. Trigiano & D. J. Gray (Eds.), Plant tissue culture concepts and laboratory exercises (pp. 75-86). CRC Press. Kang, Y., Min, Y., Moon, H., Karigar, C., Prasad, D. Lee, C., & Choi, M. (2004). Rapid in vitro adventitious shoot propagation of Scopolia parviflora through rhizome cultures for enhanced production of tropane alkaloids. Plant cell Reports, 23(3), 128-133. https://doi.org/10.1007/s00299-004-0820-0 Kochuthressia, K. P., Britto, S. J., Raj, M., Jaseentha, M. O., & Senthilkumar, S. R. (2010). Efficient regeneration of Alpinia purpurata (Vieill.) K.Schum. plantlets from rhizome bud explants. International Research Journal of Plant Science, 1(2), 43-47. Kuhnle, J., Moore, P., Haddon, W., & Fitch, M. (1983). Identification of gibberellins from sugarcane plants. Journal of Plant Growth Regulation, 2(1), 59-71. https://doi.org/10.1007/BF02042234 Kunakhonnuruk, B., Inthima, P., & Kongbangkerd, A. (2018). In vitro propagation of Epipactis flava Seidenf, an endangered rheophytic orchid: a first study on factors affecting asymbiotic seed germination, seedling development and greenhouse acclimatization. Plant Cell, Tissue and Organ Culture, 135(3), 419-432. https://doi.org/10.1007/s11240-018-1475-9 Martins, J., Verdoodt, V., Pasqual, M., & De Proft, M. (2015). Impacts of photoautotrophic and photomixotrophic conditions on in vitro propagated Billbergia zebrina (Bromeliaceae). Tissue and Organ Culture, 123(1), 121-132. https://doi.org/10.1007/s11240-015-0820-5 Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiologia Plantarum, 15(3), 473-497. Neal, M. (1965). Gardens of Hawaii (50.a edición). Bishop Museum Press. http://hbs.bishopmuseum.org/pubs-online/bpbm-sp.html Park, H., Kim, D., & Sivanesan, I. (2017). Micropropagation of Ajuga species: a mini review. Biotechnology Letters, 39(9), 1291-1298. https://doi.org/10.1007/s10529-017-2376-4 Procolombia. (2018). Flores. http://www.procolombia.co/node/1255 Rahman, M., & Blake, J. (1988). The effects of medium composition and culture conditions on in vitro rooting and ex vitro establishment of jackfruit (Artocarpus heterophyllus Lam.). Plant Cell, Tissue and Organ Culture, 13(3), 189-200. https://doi.org/10.1007/BF00043668 Rademacher, W. (2015). Plant growth regulators: Backgrounds and uses in plant production. Journal of Plant Growth Regulation, 34(4), 845-872. https://doi.org/10.1007/s00344-015-9541-6 Rizza, A., Walia, A., Languar, V., Frommer, W., & Jones, A. (2017). In vivo gibberellin gradients visualized in rapidly elongating tissues. Nature Plants, 3(10), 803-813. https://doi.org/10.1038/s41477-017-0021-9 Suárez, I., Marrugo, G., & Peña, M. (2008). Efecto del sustrato y tamaño del propágulo en el enraizamiento de ginger rojo (Alpinia purpurata). Revista Colombiana de Ciencias Hortícolas, 2(2), 225-231. https://doi.org/10.17584/rcch.2008v2i2.1190 Vijaykumar M. K., & Namdeo A. G. N. (2015). Micropropogation of Alpinia purpurata using low cost media for quantification of rutin. Scholars Research Library der Pharmacia Lettre, 7(5), 50-57. Whole Blossoms. (2018). Red Ginger Flower. http://www.wholeblossoms.com/tropical-flowers/ginger-flower/red-ginger-flower.html0


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem