Mostrar el registro sencillo del ítem

Técnicas aplicadas en la investigación agrícola para cuantificar la fijación de nitrógeno: una revisión sistemática

dc.creatorFonseca-López, Dania
dc.creatorVivas-Quila, Nelson Jose
dc.creatorBalaguera-López, Helber Enrique
dc.date2019-12-26
dc.date.accessioned2020-08-04T20:36:48Z
dc.date.available2020-08-04T20:36:48Z
dc.identifierhttp://revista.corpoica.org.co/index.php/revista/article/view/1342
dc.identifier10.21930/rcta.vol21_num1_art:1342
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/4698
dc.descriptionNitrogen economy is a subject that is growing in popularity at the global level, especially in relation to the agricultural activity, due to nutrient leaching caused by fertilization, as it contributes to the eutrophication of water. As a result, the population of algae increases, and thus, oxygen availability is reduced by accelerating the denitrification process in which N2O is produced, known mostly for its effect on global warming. Likewise, part of the fertilizer is emitted into the atmosphere by volatilization. This has led to the creation of techniques that allow quantifying the nitrogen used by plants and the one that is fixated in the soil through micro-organisms to make more efficient the use of nitrogen in agricultural systems. However, the most significant limitations are their sensitivity, specificity, cost, and the technology that is required to apply them. This has also led to the innovation of procedures and the creation of techniques that have a very low error rate. The aim of this work was to describe the main techniques used to quantify nitrogen fixation with emphasis on the background, procedures, mathematical expressions that are used and future scenarios. The information isdescribed from the analysis of available trials included in the Scopus database. This work consolidates the techniques that continue to be used to quantify nitrogen and facilitates their use over time with prediction models, as well as their importance, advantages, and disadvantages.en-US
dc.descriptionLa economía del nitrógeno es un tema que viene creciendo a nivel mundial, especialmente en la actividad agrícola cuando por mal manejo de la fertilización ocurren pérdidas por lixiviación que contribuyen a la eutrofización del agua, lo que incrementa la población de algas y, como efecto, reduce la disponibilidad de oxígeno, acelerando el proceso de desnitrificación en el que se produce N2O, conocido por su efecto en el calentamiento global. Igualmente, parte del fertilizante es emitido a la atmósfera por volatización. Esto ha impulsado la creación de técnicas que permiten cuantificar el nitrógeno utilizado por las plantas y el fijado en el suelo a través de microrganismos para hacer más eficiente el empleo del nitrógeno en los sistemas agrícolas. Sin embargo, dentro de las mayores limitantes se encuentra su sensibilidad, especificidad, costo y tecnología que se requiere para aplicarlas. Esto ha conducido a la innovación de procedimientos y a la creación de técnicas que tienen una tasa de error muy bajo. El objetivo de este trabajo fue realizar la descripción de las principales técnicas utilizadas para cuantificar la fijación del nitrógeno con énfasis en los antecedentes, procedimientos, expresiones matemáticas que se usan, y escenarios futuros. La información se describe a partir del análisis de ensayos disponibles en la base de datos Scopus. Este trabajo consolida las técnicas que continúan vigentes para cuantificar el nitrógeno y facilita entender su uso a través del tiempo con modelos de predicción, así como su importancia, ventajas y desventajas.es-ES
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.formattext/xml
dc.languagespa
dc.languageeng
dc.publisherCorporación Colombiana de Investigación Agropecuaria (Agrosavia)es-ES
dc.relationhttp://revista.corpoica.org.co/index.php/revista/article/view/1342/605
dc.relationhttp://revista.corpoica.org.co/index.php/revista/article/view/1342/606
dc.relationhttp://revista.corpoica.org.co/index.php/revista/article/view/1342/633
dc.rightsDerechos de autor 2019 Ciencia & Tecnología </br>Agropecuariaes-ES
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0/deed.eses-ES
dc.sourceCiencia y Tecnología Agropecuaria; Vol. 21 No. 1 (2020): Ciencia & Tecnología Agropecuaria; 1-19en-US
dc.sourceCiencia & Tecnología Agropecuaria; Vol. 21 Núm. 1 (2020): Ciencia & Tecnología Agropecuaria; 1-19es-ES
dc.sourcerevista Corpoica Ciência e Tecnologia Agropecuária; v. 21 n. 1 (2020): Ciencia & Tecnología Agropecuaria; 1-19pt-BR
dc.source2500-5308
dc.source0122-8706
dc.source10.21930/rcta.vol21-num1
dc.subjecteutrophicationen-US
dc.subjectfertilizer applicationen-US
dc.subjectforecastingen-US
dc.subjectisotopesen-US
dc.subjectnitrogen fixationen-US
dc.subjectAplicación de abonoses-ES
dc.subjecteutrofizaciónes-ES
dc.subjectfijación de nitrógenoes-ES
dc.subjectisótoposes-ES
dc.subjecttécnicas de fijaciónes-ES
dc.titleTechniques applied in agricultural research to quantify nitrogen fixation: a systematic reviewen-US
dc.titleTécnicas aplicadas en la investigación agrícola para cuantificar la fijación de nitrógeno: una revisión sistemáticaes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.citations1. Aguilar, S., Ávalos, A. F., Giraldo, D. P., Quintero, S., Zartha, J. W., & Cortés, F. B. (2012). La curva en S como herramienta para la medición de los ciclos de vida de productos. Journal of technology management & innovation, 7(1), 238-249. https://doi.org/10.1016/j.bjm.2017.03.007. 2. Akemi, M., Soares, T., Carvalho, D., Azarias, A., Martins, E., Savana, J., … Moreira, D. S. (2017). Tripartite symbiosis of Sophora tomentosa, rhizobia and arbuscular mycorhizal fungi. Brazilian Journal of Microbiology, 48(4), 680-688. https://doi.org/10.1016/j.bjm.2017.03.007. 3. Andrade, A. De, Albenísio, J., Bonifacio, A., Cerqueira, A., & Barreto, V. (2018). Antioxidant response of cowpea co-inoculated with plant growth-promoting bacteria under salt. Brazilian Journal of Microbiology, 49(3), 513-521. https://doi.org/10.1016/j.bjm.2017.12.003. 4. Angel, R., Panhölzl, C., Gabriel, R., Herbold, C., Wanek, W., Richter, A., … Woebken, D. (2018). Application of stable-isotope labelling techniques for the detection of active diazotrophs. Environmental microbiology, 20(1), 44-61. https://doi:10.1111/1462-2920.13954. 5. Argaw, A., & Mnalku, A. (2017). Symbiotic effectiveness of Rhizobium leguminosarum bv. vicieae isolated from major highland pulses on field pea(Pisum sativum L.) in soil with abundant rhizobial population. Annals of Agrarian Science, 15(3), 410-419. https://doi.org/10.1016/j.aasci.2017.04.005. 6. Arshi, A. (2017). Reclamation of coalmine overburden dump through environmental friendly method. Saudi Journal of Biological Sciences, 24(2), 371-378. https://doi.org/10.1016/j.sjbs.2015.09.009. 7. Bilal, M., Ayub, M., Tariq, M., Tahir, M., & Nadeem, M. A. (2017). Dry matter yield and forage quality traits of oat (Avena sativa L.) under integrative use of microbial and synthetic source of nitrogen. Journal of the Saudi Society of Agricultural Sciences, 16(3), 236-241. https://doi.org/10.1016/j.jssas.2015.08.002. 8. Bionda, C., Babini, S., Martino, A. L., Salas, N. E., & Lajmanovich, R. C. (2018). Impact assessment of agriculture and livestock over age, longevity and growth of populations of common toad Rhinella arenarum (Anura: Bufonidae), central area of Argentina. Global Ecology and Conservation, 14, 1-12. https://doi.org/10.1016/j.gecco.2018.e00398. 9. Braun, J., Mooshammer, M., Wanek, W., Prommer, J., Walker, T. W. N., Rütting, T., & Richter, A. (2018). Full 15 N tracer accounting to revisit major assumptions of dilution approaches for gross nitrogen mineralization N isotope pool. Soil Biology and Biochemistry, 117, 16-26. https://doi.org/10.1016/j.soilbio.2017.11.005. 10. Camelo-Rusinque, M., Moreno-Galván, A., Romero-Perdomo, F., & Bonilla-Buitrago, R. (2017). Desarrollo de un sistema de fermentación líquida y de enquistamiento para una bacteria fijadora de nitrógeno con potencial como biofertilizante. Revista Argentina de Microbiología, 49(3), 289-296. https://doi.org/10.1016/j.ram.2016.06.005. 11. Carter, A. M., & Tegeder, M. (2016). Increasing nitrogen fixation and seed development in soybean requires complex adjustments of nodule nitrogen metabolism and partitioning processes. Current Biology, 26(15), 2044-2051. https://doi.org/10.1016/j.cub.2016.06.003. 12. Carvalho, E. X. De, Simões, R., Menezes, C., Dolores, A., Freitas, S. De, Valadares, E., … Queiroz, R. O. De. (2017). The 15N natural abundance technique to assess the potential of biological nitrogen fixation (BNF) in some important C4 grasses. Australian Journal of Crop Science, 11(12), 1559-1564. https://doi.org/10.21475/ajcs.17.11.12.pne729. 13. Castanheira, N. L., Dourado, A. C., Pais, I., Semedo, J., Scotti-Campos, P., Borges, N., … Fareleira, P. (2017). Colonization and beneficial effects on annual ryegrass by mixed inoculation with plant growth promoting bacteria. Microbiological Research, 198, 47-55. https://doi.org/10.1016/j.micres.2017.01.009. 14. Chalk, P. M., & Craswell, E. T. (2018). An overview of the role and significance of 15 N methodologies in quantifying biological N 2 fixation ( BNF ) and BNF dynamics in agro-ecosystems, Simbiosis, 75(1), 1-16. https://doi.org/10.1007/s13199-017-0526-z. 15. Chauhan, A., Guleria, S., Balgir, P. P., Walia, A., Mahajan, R., Mehta, P., & Shirkot, C. K. (2017). Tricalcium phosphate solubilization and nitrogen fixation by newly isolated Aneurinibacillus aneurinilyticus CKMV1 from rhizosphere of Valeriana jatamansi and its growth promotional effect. Brazilian Journal of Microbiology, 48(2), 294-304. https://doi.org/10.1016/j.bjm.2016.12.001. 16. Das, S., & De, T. K. (2018). Microbial assay of N2 fixation rate, a simple alternate for acetylene reduction assay. MethodsX, 5, 909-914. https://doi.org/10.1016/j.mex.2017.11.010. 17. Dutta, S., Datta, J. K., & Mandal, N. C. (2017). Evaluation of indigenous rhizobacterial strains with reduced dose of chemical fertilizer towards growth and yield of mustard (Brassica campestris) under old alluvial soil zone of West Bengal, India. Annals of Agrarian Science, 15(4), 447-452. https://doi.org/10.1016/j.aasci.2017.02.015. 18. Fonseca, S., Peixoto, R. S., Rosado, A. S., Balieiro, D. C., Tiedje, J. M., Tavora, C., & Rachid, C. (2017). The microbiome of eucalyptus roots under different management conditions and its potential for biological nitrogen fixation. Microbial Ecology, 75(1), 183-191. https://doi.org/10.1007/s00248-017-1014-y. 19. Fuertes-mendizábal, T., Estavillo, J. M., Duñabeitia, M. K., & Fuertes-Mendizábal, T. (2018). 15 N Natural abundance evidences a better use of N sources by late nitrogen application in bread wheat. Frontiers in Plant Science, 9(853), 1-11. https://doi.org/10.3389/fpls.2018.00853. 20. García, J. E., Maroniche, G., Creus, C., Suárez-Rodríguez, R., Ramirez-Trujillo, J. A., & Groppa, M. D. (2017). In vitro PGPR properties and osmotic tolerance of different Azospirillum native strains and their effects on growth of maize under drought stress. Microbiological Research, 202, 21-29. https://doi.org/10.1016/j.micres.2017.04.007. 21. Hamawaki, R. L., & Kantartzi, S. K. (2018). Fixação de nitrogênio na fase inicial e final de desenvolvimento da soja. Acta Scientiarum - Agronomy, 40(1), 1-10. https://doi.org/10.4025/actasciagron.v40i1.36372. 22. Hashem, A., Kumar, A., Al-Dbass, A. M., Alqarawi, A. A., Al-Arjani, A. F., Singh, G., … Allah, A. (2018). Arbuscular mycorrhizal fungi and biochar improves drought tolerance in chickpea. Saudi Journal of Biological Sciences, 26(3), 614-624 https://doi.org/10.1016/j.sjbs.2018.11.005. 23. Jaiswal, S. K., Msimbira, L. A., & Dakora, F. D. (2017). Phylogenetically diverse group of native bacterial symbionts isolated from root nodules of groundnut (Arachis hypogaea L.) in South Africa. Systematic and Applied Microbiology, 40(4), 215-226. https://doi.org/10.1016/j.syapm.2017.02.002. 24. Kataria, S., & Baghel, L. (2016). Influence of UV exclusion and selenium on carbon fixation, nitrogen fixation and yield of soybean variety JS-335. South African Journal of Botany, 103, 126-134. http://dx.doi.org/10.1016/j.sajb.2015.09.003. 25. Khalifa, A. Y. Z., & AlMalki, M. (2018). Polyphasic characterization of Delftia acidovorans ESM-1, a facultative methylotrophic bacterium isolated from rhizosphere of Eruca sativa. Saudi Journal of Biological Sciences, 1-6. https://doi.org/10.1016/j.sjbs.2018.05.015. 26. Leite, J., Ribeiro, S., Simões-Araújo, J. L., Gouvêa, N., Ribeiro, G., & Édson, J. (2017). Genomic identification and characterization of the elite strains Bradyrhizobium yuanmingense BR 3267 and Bradyrhizobium pachyrhizi BR 3262 recommended for cowpea inoculation in Brazil. Brazilian Journal of Microbiology, 49(4), 703-713. https://doi.org/10.1016/j.bjm.2017.01.007. 27. Liu, H., Zhang, L., Meng, A., Zhang, J., Xie, M., Qin, Y., … Qiu, L. (2017). Isolation and molecular identification of endophytic diazotrophs from seeds and stems of three cereal crops. PLoS ONE, 12(10), 1-11. https://doi.org/10.1371/journal. pone.0187383. 28. Mondal, T., Datta, J. K., & Mondal, N. K. (2017). Chemical fertilizer in conjunction with biofertilizer and vermicompost induced changes in morpho-physiological and bio-chemical traits of mustard crop. Journal of the Saudi Society of Agricultural Sciences, 16(2), 135-144. https://doi.org/10.1016/j.jssas.2015.05.001. 29. Mwenda, G. M., Hara, G. W. O., Meyer, S. E. De, Howieson, J. G., & Terpolilli, J. J. (2018). Genetic diversity and symbiotic effectiveness of Phaseolus vulgaris -nodulating rhizobia in Kenya. Systematic and Applied Microbiology, 41(4), 291-299. https://doi.org/10.1016/j.syapm.2018.02.001. 30. Ndungu, S. M., Messmer, M. M., Ziegler, D., Gamper, H. A., Mészáros, É., Thuita, M., … Thonar, C. (2018). Cowpea (Vigna unguiculata L. Walp) hosts several widespread bradyrhizobial root nodule symbionts across contrasting agro-ecological production areas in Kenya. Agriculture, Ecosystems and Environment, 261, 161-171. https://doi.org/10.1016/j.agee.2017.12.014. 31. Osei, O., Abaidoo, R. C., Ahiabor, B. D. K., & Boddey, R. M. (2018). Bacteria related to Bradyrhizobium yuanmingense from Ghana are e ff ective groundnut micro-symbionts. Applied Soil Ecology, 127, 41-50. https://doi.org/10.1016/j.apsoil.2018.03.003. 32. Pai, M., Mcculloch, M., Gorman, J. D., Pai, N., Enanoria, W., Kennedy, G., … Colford, J. M. (2004). Systematic reviews and meta-analyses?: An illustrated , step-by-step guide. Clinical Research Methods, 17(2), 86-95. 33. Polania, J., Poschenrieder, C., Rao, I., & Beebe, S. (2016). Estimation of phenotypic variability in symbiotic nitrogen fixation ability of common bean under drought stress using 15 N natural abundance in grain. European Journal of Agronomy, 79, 66-73. https://doi.org/10.1016/j.eja.2016.05.014. 34. Rampadarath, S., Bandhoa, K., Puchooa, D., Jeewon, R., & Bal, S. (2017). Early bacterial biofilm colonizers in the coastal waters of Mauritius. Electronic Journal of Biotechnology, 29, 13-21. https://doi.org/10.1016/j.ejbt.2017.06.006 35. Ribeiro, D., Ferreira, A., Idaline, M., Cavalcanti, P., Elena, I., Escobar, C., … Fernandes-júnior, P. I. (2018). Phenotypic , genetic and symbiotic characterization of Erythrina velutina rhizobia from Caatinga dry forest. Brazilian Journal of Microbiology, 49(3), 503-512. https://doi.org/10.1016/j.bjm.2017.09.007 36. Rigonato, J., Kent, A. D., Gumiere, T., Henrique, L., Branco, Z., Dini, F., … Paulo, S. (2017). Temporal assessment of microbial communities in soils of two contrasting mangroves. Brazilian Journal of Microbiology, 49(1), 87-96. https://doi.org/10.1016/j.bjm.2017.04.008 37. Ritchie, M. E., & Raina, R. (2016). Effects of herbivores on nitrogen fi xation by grass endophytes, legume symbionts and free-living soil surface bacteria in the Serengeti, Pedobiologia, 59, 233-241. https://doi.org/10.1016/j.pedobi.2016.09.001. 38. Roley, S. S., Xue, C., Hamilton, S. K., Tiedje, J. M., & Philip, G. (2018). Isotopic evidence for episodic nitrogen fixation in switchgrass (Panicum virgatum L.). Soil Biology and Biochemistry, 129, 99-98. https://doi.org/10.1016/j.soilbio.2018.11.006. 39. Sainju, U. M. (2017). Determination of nitrogen balance in agroecosystems. MethodsX, 4, 199-208. https://doi.org/10.1016/j.mex.2017.06.001. 40. Santos, A. A., Silveira, J. A. G., Guilherme, E. A., Bonifacio, A., Rodrigues, A. C., & Figueiredo, M. do V. B. (2018). Changes induced by co-inoculation in nitrogen-carbon metabolism in cowpea under salinity stress. Brazilian Journal of Microbiology, 49(4), 685-694. https://doi.org/10.1016/j.bjm.2018.01.007. 41. Satyanarayana, S. D. V, Krishna, M. S. R., Pavan, P., & Jeereddy, S. (2018). In silico structural homology modeling of nif A protein of rhizobial strains in selective legume plants. Journal of Genetic Engineering and Biotechnology, 16(2), 731-737. https://doi.org/10.1016/j.jgeb.2018.06.006. 42. Stewart, W. D., Fitzgerald, G. P., Burris, R. H., & Nov, N. (1967). In situ studies on N2 fixation using the acetylene reduction. Proceedings of the National Academy of Sciences of the United States of America, 58(5), 2071-2078. https://doi.org/10.1073/pnas.58.5.2071. 43. Tahon, G., & Willems, A. (2017). Isolation and characterization of aerobic anoxygenic phototrophs from exposed soils from the Sør Rondane Mountains, East Antarctica. Systematic and Applied Microbiology, 40(6), 357-369. https://doi.org/10.1016/j.syapm.2017.05.007. 44. Tchuisseu Tchakounté, G. V., Berger, B., Patz, S., Fankem, H., & Ruppel, S. (2018). Community structure and plant growth-promoting potential of cultivable bacteria isolated from Cameroon soil. Microbiological Research, 214, 47-59. https://doi.org/10.1016/j.micres.2018.05.008. 45. Thilakarathna, M. S., Moroz, N., & Raizada, M. N. (2017). A biosensor-based leaf punch assay for glutamine correlates to symbiotic nitrogen fixation measurements in legumes to permit rapid screening of rhizobia inoculants under controlled conditions. Frontiers in Plant Science, 8, 1-11. https://doi.org/10.3389/fpls.2017.01714. 46. Thilakarathna, M. S., & Raizada, M. N. (2018). Challenges in using precision agriculture to optimize symbiotic nitrogen fixation in legumes: Progress, limitations , and future improvements needed in diagnostic testing. Agronomy, 8(5), 1-21. https://doi.org/10.3390/agronomy8050078 47. https://doi.org/10.3390/agronomy8050078 48. Van Vugt, D., Franke, A. C., & Giller, K. E. (2018). Understanding variability in the benefits of N2-fixation in soybean-maize rotations on smallholder farmers' fields in Malawi. Agriculture, Ecosystems and Environment, 261(36), 241-250. https://doi.org/10.1016/j.agee.2017.05.008. 49. Wambeke, F. Van, Gimenez, A., Duhamel, S., Dupouy, C., & Lefevre, D. (2018). Dynamics and controls of heterotrophic prokaryotic production in the western tropical South Pacific Ocean: links with diazotrophic and photosynthetic activity. Biogeosciences, 15(9), 2669-2689. 50. Yan, K., Ranjitkar, S., Zhai, D., Li, Y., Xu, J., Li, B., & Lu, Y. (2017). Current re-vegetation patterns and restoration issues in degraded geological phosphorus-rich mountain areas: A synthetic analysis of Central Yunnan, SW China. Plant Diversity, 39(3), 140-148. https://doi.org/10.1016/j.pld.2017.04.003. 51. Yong, T. Wen, Chen, P., Dong, Q., Du, Q., Yang, F., Wang, X. Chun, … Yang, W. Y. (2018). Optimized nitrogen application methods to improve nitrogen use efficiency and nodule nitrogen fixation in a maize-soybean relay intercropping system. Journal of Integrative Agriculture, 17(3), 664-676. https://doi.org/10.1016/S2095-3119(17)61836-7.0


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem