Mostrar el registro sencillo del ítem

Evaluación de Bacillus spp. como rizobacterias promotoras del crecimiento vegetal (RPCV) en brócoli (Brassica oleracea var. italica) y lechuga (Lactuca sativa)

dc.creatorAcurio Vásconez, Ramiro Daniel
dc.creatorMamarandi Mossot, Johanna Estefania
dc.creatorOjeda Shagñay, Andrea Giomayra
dc.creatorTenorio , Estefany Michelle
dc.creatorChiluisa Utreras, Viviana Pamela
dc.creatorVaca Suquillo, Ivonne De los Ángeles
dc.date2020-07-28
dc.date.accessioned2020-08-04T20:36:51Z
dc.date.available2020-08-04T20:36:51Z
dc.identifierhttp://revista.corpoica.org.co/index.php/revista/article/view/1465
dc.identifier10.21930/rcta.vol21_num3_art:1465
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/4711
dc.descriptionLettuce and broccoli are valuable agricultural products in Ecuador whose cultivation demands considerable quantities of mineral nutrients, usually obtained from chemical fertilizers. As the use of plant growth-promoting rhizobacteria (PGPR) has shown to be a biological alternative for cropping these vegetable species, several strains of Bacillus spp. were evaluated through laboratory and field tests. Biological nitrogen fixation was performed by a qualitative assessment in a free nitrogen culture medium; the indoleacetic acid production was carried out in a Tryptic Soy Broth (TSB) medium by quantifying its concentration using Salkowski’s reagent; phosphate solubilization was established on an NBRIP medium and the transformed phosphorus concentration was quantified with the Mo-Blue reagent. The data obtained showed a significant difference between the treatments (p < 0.01) where B. megaterium and B. licheniformis showed a higher ability to fix nitrogen, produce auxins, and solubilize phosphate. Field tests achieved, on the one hand, an increase in height of 26.7 % and 13.7 % in lettuce and broccoli, respectively, with a weekly application of B. licheniformis. On the other hand, a weekly application of B. megaterium significantly increased the dry matter content, length, and root weight in lettuce as well as in broccoli. All comparisons were made against a control. These results show that the strains identified in this research could be considered as growth-promoting microorganisms and are a biological alternative to chemical fertilizers.en-US
dc.descriptionLa lechuga y el brócoli son productos de importancia agrícola en Ecuador, cuyo cultivo demanda considerables cantidades de nutrientes minerales obtenidos, generalmente, de fertilización química. Dado que el uso de rizobacterias promotoras de crecimiento vegetal (RPCV) es una alternativa biológica para el desarrollo de estas especies hortícolas, se estudiaron varias cepas de Bacillus spp. mediante pruebas en laboratorio y campo. La fijación biológica de nitrógeno se realizó mediante una evaluación cualitativa en medio de cultivo libre de nitrógeno; la producción de ácido indolacético se realizó en medio Tryptic Soy Broth (TSB) y se cuantificó la concentración de este con el reactivo de Salkowski; la solubilización de fosfatos se realizó en medio NBRIP, y se cuantificó la concentración de fósforo transformado con el reactivo Mo-Blue. Los datos obtenidos mostraron una diferencia significativa entre los tratamientos (p < 0,01), donde B. megaterium y B. licheniformis presentaron mayor capacidad para fijar nitrógeno, producir auxinas y solubilizar fosfatos. La evaluación de campo determinó, por una parte, un incremento en altura de 26,7 % y 13,72 % en lechuga y brócoli respectivamente, con la aplicación semanal de B. licheniformis. Por otra parte, la aplicación semanal de B. megaterium incrementó significativamente el contenido de materia seca, longitud y peso de la raíz tanto en lechuga como en brócoli. Todas las comparaciones se hicieron frente a un testigo. Estos resultados demuestran que las cepas identificadas en la investigación pueden ser consideradas como rizobacterias promotoras de crecimiento vegetal y son una alternativa biológica a los fertilizantes de síntesis química.es-ES
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languagespa
dc.languageeng
dc.publisherCorporación Colombiana de Investigación Agropecuaria (Agrosavia)es-ES
dc.relationhttp://revista.corpoica.org.co/index.php/revista/article/view/1465/721
dc.relationhttp://revista.corpoica.org.co/index.php/revista/article/view/1465/722
dc.rightsDerechos de autor 2020 Ciencia & Tecnología Agropecuariaes-ES
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0/deed.eses-ES
dc.sourceCiencia y Tecnología Agropecuaria; Vol. 21 No. 3 (2020): Ciencia & Tecnología Agropecuaria-Publicación continua; 1-16en-US
dc.sourceCiencia & Tecnología Agropecuaria; Vol. 21 Núm. 3 (2020): Ciencia & Tecnología Agropecuaria-Publicación continua; 1-16es-ES
dc.sourcerevista Corpoica Ciência e Tecnologia Agropecuária; v. 21 n. 3 (2020): Ciencia & Tecnología Agropecuaria-Publicación continua; 1-16pt-BR
dc.source2500-5308
dc.source0122-8706
dc.source10.21930/rcta.vol21-num3
dc.subjectAuxinsen-US
dc.subjectbiofertilizeren-US
dc.subjectnitrogen fixationen-US
dc.subjectphosphate solubilizingen-US
dc.subjectrhizobacteriaen-US
dc.subjectAuxinases-ES
dc.subjectbiofertilizantees-ES
dc.subjectfijación de nitrógenoes-ES
dc.subjectrizobacteriases-ES
dc.subjectsolubilización de fosfatoses-ES
dc.titleEvaluation of Bacillus spp. as plant growth-promoting rhizobacteria (PGPR) in broccoli (Brassica oleracea var. italica) and lettuce (Lactuca sativa) zen-US
dc.titleEvaluación de Bacillus spp. como rizobacterias promotoras del crecimiento vegetal (RPCV) en brócoli (Brassica oleracea var. italica) y lechuga (Lactuca sativa)es-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.citationsAcurio, R., Tenorio, E., Collaguazo, L., Chiluisa, V., & Vaca, I. (2020). Evaluation of Bacillus megaterium strain AB4 as a potential biocontrol agent of Alternaria japonica, a mycopathogen of Brassica oleracea var. italica. Biotechnology Reports, 26, https://doi.org/10.1016/j.btre.2020.e00454 Acuña, J., Jorquera, M., Martínez, O., Menezes-Blackburn, D., Fernández, M., Marschner, P., Greiner, R., & Mora, M. (2011). Indole acetic acid and phytase activity produced by rhizosphere bacilli as affected by pH and metals. Journal of Soil Science and Plant Nutrition, 11(3). 1-12. http://dx.doi.org/10.4067/S0718-95162011000300001 Bashan, Y., Salazar, B., Moreno, M., Lopez, B., & Linderman, R. (2012). Restoration of eroded soil in the Sonoran Desert with native leguminous trees using plant growth-promoting microorganisms and limited amounts of compost and water. Journal of Environmental Management, 102, 26-36. https://doi.org/10.1016/j.jenvman.2011.12.032 Bhattacharyya, P., & Jha, D. (2012). Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology, 28(1), 1327-1350. https://doi.org/10.1007/s11274-011-0979-9 Bobadilla, C., & Rincón, S. (2008). Aislamiento y producción de bacterias fosfato solubilizadoras a partir de compost obtenido de residuos de plaza [tesis de pregrado, Pontificia Universidad Javeriana]. Repositorio institucional. https://javeriana.edu.co/biblos/tesis/ciencias/tesis130.pdf Camelo, M., Vera, S., & Bonilla, R. (2011). Mecanismos de acción de las rizobacterias promotoras del crecimiento vegetal. Ciencia y Tecnología Agropecuaria, 12(2), 159-166. https://doi.org/10.21930/rcta.vol12_num2_art:227 Cassán, F., Perrig, D., Sgroy, V., Masciarelli, O., Penna, C., & Luna, V. (2009). Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). European Journal of Soil Biology, 45(1), 28-35. https://doi.org/10.1016/j.ejsobi.2008.08.005 Chávez, L. A., Hernández, A., Cabrera, J. A., Luna, L., & Pacheco, J. R. (2016). Aislados de Bacillus provenientes de la rizósfera de cactus incrementan la germinación y la floración en Mammillaria spp. (Cactaceae). Revista Argentina de Microbiología, 48(4), 333-341. https://doi.org/10.1016/j.ram.2016.09.001 Correa, O. (2016). Los microorganismos del suelo y su rol indiscutido en la nutrición vegetal. En Z. Martín, C. Fernández, & R. Lavado (Eds.), Aportes de la microbiología a la producción de los cultivos. (1a ed., pp. 1-10). Editorial de la Facultad de Agronomía. https://www.researchgate.net/publication/306960003_LOS_MICROORGANISMOS_DEL_SUELO_Y_SU_ROL_INDISCUTIDO_EN_LA_NUTRICION_VEGETAL González, H., & Fuentes, N. (2017). Mecanismo de acción de cinco microorganismos promotores de crecimiento vegetal. Revista de Ciencias Agrícolas, 34(1), 17-31. http://dx.doi.org/10.22267/rcia.173401.60 Grageda, O., Díaz, A., Peña, J., & Vera, A. (2012). Impacto de los biofertilizantes en la agricultura. Revista Mexicana de Ciencias Agrícolas, 3(6), 1261-1274. https://doi.org/10.29312/remexca.v3i6.1376 Gutiérrez-Chávez, A., Hernández-Huerta, J., Robles-Hernández, l., & González-Franco, A. (2019). Rizobacterias promotoras de crecimiento vegetal en lechuga (Lactuca sativa L.) bajo sistema aeropónico. Revista Mexicana de Fitosanidad, 3(1), 1-10. http://www.revimexfito.com.mx/files1/Remefi%203_1/REMEFI_3(1)_1-10_2019.pdfe Instituto Nacional de Estadística y Censos. (2016). Indice de publicacion ESPAC 2015. https://www.ecuadorencifras.gob.ec/documentos/webinec/Estadisticas_agropecuarias/espac/espac_20142015/2015/Presentacion%20de%20resultados%20ESPAC_2015.pdf Instituto Nacional de Estadística y Censos. (2018). Encuesta de Superficie y Producción Agropecuaria Continua, ESPAC. https://www.ecuadorencifras.gob.ec/estadisticas-agropecuarias-2/ Maccarrone, A., Benzzo, M., & Seluy, L. (2016). Aislamiento y selección de microorganismos de género Bacillus con actividad antifúngica y/o promotora del crecimiento. Encuentro de jóvenes investigadores, Universidad Nacional de Litoral. https://bibliotecavirtual.unl.edu.ar:8443/bitstream/handle/11185/2079/RCB12.pdf Martínez, L., Peniche, R., Iturriaga, M., Medrano, S., & Pacheco, J. (2013). Caracterización de rizobacterias aisladas de tomate y su efecto en el crecimiento de tomate y pimiento. Revista Fitotecnia Mexicana, 36(1), 63-69. https://doi.org/10.35196/rfm.2013.1.63 73802013000100007 Moreno, A., Carda, V., Reyes, J., Vásquez, J., & Cano, P. (2018). Rizobacterias promotoras del crecimiento vegetal: una alternativa de biofertilización para la agricultura sustentable. Revista Colombiana de Biotecnología, 20(1), 68-83. https://doi.org/10.15446/rev.colomb.biote.v20n1.73707 Mota, L. (2013). Utilización de un medio enriquecido con melazas para la producción de biomasa de Bacillus licheniformis con potencial biofertilizante [Tesis de maestría, Universidad Tecnológica de la Mixteca]. http://jupiter.utm.mx/~tesis_dig/11621.pdf Navarro, J. (2010). La técnica del área bajo la curva. http://www.kerwa.ucr.ac.cr/handle/10669/585 Posada, L. (2017). Promoción de crecimiento vegetal de Bacillus subtilis EA-CB0575, colonización rizosférica y potencial genómico y bioquímico [Tesis doctoral, Universidad Nacional de Colombia]. Repositorio BDigital. http://bdigital.unal.edu.co/57419/1/43979285.2017.pdf Ramírez, R., Camacho, A., Reyes, G., & Esquivel, R. (2015). Técnicas básicas de microbiología y su fundamento. Trillas. Ramírez, L., Lozano, L., Méndez, M., Rojas, S., & Torres, J. (2017). Bacillus spp: una alternativa para la promoción vegetal por dos caminos enzimáticos. Nova, 15(27), 46-65. https://doi.org/10.22490/24629448.1958 Rodríguez, O., Aguilera, I., & Pérez, R. (2013). Adecuación de un micrométodo colorimétrico para la cuantificación de fósforo soluble en cultivos microbianos. Revista Cubana de Química, 25(1), 3-8. http://www.redalyc.org/pdf/4435/443543730001.pdf Sambrook, J., & Russell, W. (2001). Molecular Cloning. A Laboratory Manual (3a ed.). Cold Spring Harbor Laboratory Press. Sánchez, B., García, A., Romero, A., & Bonilla, R. (2014). Efecto de rizobacterias promotoras de crecimiento vegetal solubilizadoras de fosfato en Lactuca sativa cultivar White Boston. Revista Colombiana de Biotecnología, 16(2), 122-128. https://doi.org/10.15446/rev.colomb.biote.v16n2.41077 Sánchez, D., & Pérez, J. (2018). Caracterización y evaluación de PGPRs sobre el crecimiento de plántulas de Dioscorea rotundata in vitro. Agronomía Costarricense, 42(2), 75-91. https://doi.org/10.15517/rac.v42i2.33780 Stoll, A., Olalde, V., & Bravo, J. (2018). Efecto de bacterias promotoras del crecimiento vegetal andinas sobre el crecimiento de plántulas de lechuga bajo condiciones industriales. Biotecnología y Sustentabilidad, 1(1), 36-40. http://revistas.uaz.edu.mx/index.php/biotecnologiaysust/article/view/165 Tejera, B., Heydrich, M., & Rojas, M. (2013). Aislamiento de Bacillus solubilizadores de fosfatos asociados al cultivo del arroz. Agronomía Mesoamericana, 24(2), 357-364. https://doi.org/10.15517/am.v24i2.12535 Tejera, B., Rojas, M. M., & Heydrich, M. (2011). Potencialidades del género Bacillus en la promoción del crecimiento vegetal y el control biológico de hongos fitopatógenos. Revista CENIC Ciencias Biológicas, 42(3), 131-138. http://www.redalyc.org/pdf/1812/181222321004.pdf Vivanco, R., Molina, D., Morales, Y., Quintero, V., Munive, A., & Muñoz, J. (2016). Reto agrobiotecnológico: inoculantes bacterianos de segunda generación. Alianzas y Tendencias, 1(1), 9-19. https://www.researchgate.net/publication/307540839_Reto_agrobiotecnologico_inoculantes_bacterianos_de_segunda_generacion Weisburg W., Barns S., Pelletier D., & Lane D. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173(2), 697-703. https://doi.org/10.1128/jb.173.2.697-703.1991 Yildirim, E., Karlidag, H., Turan, M., & Donmez, M. F. (2010, 20-24 de febrero). Potential use of plant growth promoting rhizobacteria in organic broccoli (Brassica oleracea L., var. italica) Production [ponencia]: Ecofruit. 14th International Conference on Organic Fruit-Growing. Proceedings for the conference, Hohenheim, Germany. https://www.ecofruit.net/2010/34_RP_E_Yildrim_H_Karlidag_M_Turan_M_F_Donmez_S227bis235.pdf0


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem