Mostrar el registro sencillo del ítem

Variabilidad genética neutral y presencia de mecanismos de resistencia en Myzus persicae (Hemiptera: Aphididae), provenientes de diferentes hospedantes en Chile central

dc.creatorRubiano-Rodríguez, José Antonio
dc.creatorFuentes-Contreras, Eduardo
dc.creatorRamirez, Claudio
dc.date2019-09-04
dc.date.accessioned2020-08-04T20:36:53Z
dc.date.available2020-08-04T20:36:53Z
dc.identifierhttp://revista.corpoica.org.co/index.php/revista/article/view/1589
dc.identifier10.21930/rcta.vol20_num3_art:1589
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/4721
dc.descriptionMyzus persicae is considered the third pest of economic importance in Chile affecting several crops. Its genetic variability is influenced by theavailability of the primary host. M. persicae has acquired resistance to most of the insecticides used for its control. The current work aimed to evaluate the genetic diversity and the presence of resistance mechanisms of M. persicae in crops, such as peach and sweet pepper. The study was carried out in twelve localities, six in the O'Higgins region and six in the Maule region of central Chile. Monthly collections were performed on the crops and their associatedweeds. To evaluate the neutral genetic diversity, seven microsatellite markers were used, and the identification of mechanisms was performed by allelic discrimination tests. According to the results, the highest genetic diversity (> 0.80 on average) was found in peach populations. In sweet pepper and associated weeds, this diversity was 0.36 on average. The frequency of individuals with resistance mechanisms was low and predominantly heterozygous in the hosts assessed, suggesting that the sexual reproduction form of the aphid influences the levels of resistance to the insecticide. The presence of resistance mechanisms in M. persicae depends on the host, the geographical region, and the time in which they are evaluated. There is sufficient evidence that the populations of M. persicae are comprised of extremely few genetic groups, presenting different resistance dynamics to insecticides in the same agricultural season.en-US
dc.descriptionMyzus persicae es considerado la tercera plaga de importancia económica de varios cultivos en Chile. Su variabilidad genética es influenciada por la disponibilidad del hospedante primario. Este insecto ha adquirido resistencia a la mayoría de los insecticidas utilizados para su control. El presente trabajotuvo como objetivo evaluar la diversidad genética y la presencia de mecanismos de resistencia de M. persicae en cultivos como duraznero y pimentón. El estudio se realizó en doce localidades: seis en la región de O'Higgins y seis en la región del Maule en Chile central. Para evaluar la diversidad genética neutral, se utilizaron siete marcadores microsatélites, y la identificación de mecanismos se realizó mediante ensayos de discriminación alélica. La mayor diversidadgenética se presentó en poblaciones del duraznero > 0,80 en promedio. En pimentón y arvenses, esta diversidad fue 0,36 en promedio. La frecuencia de individuos con mecanismos de resistencia fue baja y en forma predominantemente heterocigota en los hospedantes evaluados, lo que sugiere que la forma de reproducción sexual del áfido influye en los niveles de resistencia a insecticida. La presencia de mecanismos de resistencia en M. persicae dependedel hospedante, región geográfica y momento de muestreo en el que son evaluados. Existe suficiente evidencia de que las poblaciones de M. persicae están compuestas por muy pocos grupos genéticos, presentando diferentes dinámicas de resistencia a insecticidas en la misma temporada agrícola.es-ES
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languagespa
dc.languageeng
dc.publisherCorporación Colombiana de Investigación Agropecuaria (Agrosavia)es-ES
dc.relationhttp://revista.corpoica.org.co/index.php/revista/article/view/1589/597
dc.relationhttp://revista.corpoica.org.co/index.php/revista/article/view/1589/598
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0/deed.eses-ES
dc.sourceCiencia y Tecnología Agropecuaria; Vol. 20 No. 3 (2019): Ciencia y Tecnología Agropecuaria Septiembre-Diciembre; 611-633en-US
dc.sourceCiencia & Tecnología Agropecuaria; Vol. 20 Núm. 3 (2019): Ciencia y Tecnología Agropecuaria Septiembre-Diciembre; 611-633es-ES
dc.sourcerevista Corpoica Ciência e Tecnologia Agropecuária; v. 20 n. 3 (2019): Ciencia y Tecnología Agropecuaria Septiembre-Diciembre; 611-633pt-BR
dc.source2500-5308
dc.source0122-8706
dc.source10.21930/rcta.vol20-num3
dc.subjectBrassicaceaeen-US
dc.subjectinsecticidesen-US
dc.subjectplant pestsen-US
dc.subjectPrunus persicaen-US
dc.subjectresistanceen-US
dc.subjectBrassicaceaees-ES
dc.subjectinsecticidases-ES
dc.subjectplagas de plantases-ES
dc.subjectPrunus persicaes-ES
dc.subjectresistenciaes-ES
dc.titleNeutral genetic variability and resistance mechanisms present in Myzus persicae (Hemiptera: Aphididae) from different hosts in central Chileen-US
dc.titleVariabilidad genética neutral y presencia de mecanismos de resistencia en Myzus persicae (Hemiptera: Aphididae), provenientes de diferentes hospedantes en Chile centrales-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.citations1. Abbas, N., Khan, H., & Shad, S. A. (2015). Cross-resistance, stability, and fitness cost of resistance to imidacloprid in Musca domestica L., (Diptera: Muscidae). Parasitology Research, 114(1), 247-255. https://doi.org/10.1007/s00436-014-4186-0 2. Anstead, J. A., Williamson, M. S., & Denholm, I. (2008). New methods for the detection of insecticide resistant Myzus persicae in the UK suction trap network. Agricultural and Forest Entomology, 10(3), 291-295. https://doi.org/10.1111/j.1461-9563.2008.00388.x 3. Anstead, J. A., Williamson, M. S., Eleftherianos, L., & Denholm, I. (2004). High-throughput detection of knock-down resistance in Myzus persicae using allelic discriminating quantitative PCR. Insect Biochemistry and Molecular Biology, 34(8), 871-877. https://doi.org/10.1016/j.ibmb.2004.06.002 4. Bass, C., Puinean, A., Andrews, M., Cutler, P., Daniels, M., Elias, J., …, Slater, R. (2011). Mutation of a nicotinic acetylcholine receptor beta subunit is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. BMC Neuroscience, 12(51), 11. https://doi.org/10.1186/1471-2202-12-51 5. Blackman, R. L., Malarky, G., Margaritopoulos, J. T., & Tsitsipis, J. A. (2007). Distribution of common genotypes of Myzus persicae (Hemiptera: Aphididae) in Greece, in relation to life cycle and host plant. Bulletin of Entomological Research, 97(3), 253-263. https://doi.org/10.1017/S0007485307004907 6. Blackman, R. L., & Eastop, V. F. (2007). Taxonomic Issues En H. F. Van Emden, & R. Harrington (Eds.), Aphids as Crop Pests. (1-29). Chichester, Inglaterra: CAB International. https://doi.org/10.1079/9780851998190.0001 7. Blackman, R. L., & Eastop, V. F. (2000). Aphids on the world's crops. An identification guide. 2nd edn. Chichester, Inglaterra: John Wiley. 8. Borodovsky, M., & Mcininch, J. (1993). GeneMark: parallel gene recognition for both DNA strands. Computers and Chemistry, 17(2) 123-133. https://doi.org/10.1016/0097-8485(93)85004-V 9. Castañeda, L. E., Barrientos, K., Cortes, P. A., Figueroa, C. C., Fuentes-Contreras, E., Briones, L, M., …, Bacigalupe, L. D. (2011). Evaluating reproductive fitness and metabolic costs for insecticide resistance in Myzus persicae from Chile. Physiological Entomology, 36(3), 253-260. https://doi.org/10.1111/j.1365-3032.2011.00793.x 10. Castellanos, N. L., Haddi, K., Gislaine, A., Carvalho. G. A., De Paulo, P. D., Hirose, E.,… Oliveira1, E. E. (2019). Imidacloprid resistance in the Neotropical brown stink bug Euschistus heros: selection and fitness costs. Journal of Pest Science, 92(2), 847-860 https://doi.org/10.1007/s10340-018-1048-z 11. Charaabi, K., Carletto, J., Chavigny, P., Marrakchi, M., Makni, M., & Vanlerberghe-Masutti, F. (2008). Genotypic diversity of the cotton-melon aphid Aphis gossypii (Glover) in Tunisia is structured by host plants. Bulletin of Entomological Research, 98(4), 333-341. https://doi.org/10.1017/S0007485307005585 12. Dewar, A.M. (2007). Chemical control. Aphids as crop pests. En H. F. Van Emden, & R. Harrington (Eds.), Aphids as Crop Pests. (391-411). Chichester Inglaterra: CAB International. https://doi.org/10.1079/9780851998190.0391 13. Devonshire, A. L., Field, L. M., Foster, S. P., Moores, G. D., Williamson, M. S., & Blackman, R. L. (1998). The evolution of insecticide resistance in the peach-potato aphid, Myzus persicae. Philosophical Transactions of the Royal Society B-Biological Sciences, 353(1376), 1677-1684. https://doi.org/10.1098/rstb.1998.0318 14. Eleftherianos, I., Foster, S. P., Williamson, M. S., & Denholm, I. (2008). Characterization of the M918T sodium channel gene mutation associated with strong resistance to pyrethroid insecticides in the peach-potato aphid, Myzus persicae (Sulzer). Bulletin of Entomological Research, 98(2), 183-191. https://doi.org/10.1017/S0007485307005524 15. Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14(8), 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x 16. Fenton, B., Kasprowicz, L., Malloch, G., & Pickup, J. (2010). Reproductive performance of asexual clones of the peach-potato aphid, (Myzus persicae, Homoptera: Aphididae), colonising Scotland in relation to host plant and field ecology. Bulletin of Entomological Research, 100(4), 451-460. https://doi.org/10.1017/S0007485309990447 17. Fenton, B., Margaritopoulos, J. T., Malloch, G. L., & Foster, S. P. (2010). Micro-evolutionary change in relation to insecticide resistance in the potato aphid, Myzus persicae. Ecological Entomology, 35(1), 131-146. https://doi.org/10.1111/j.1365-2311.2009.01150.x 18. Fenton, B., Malloch, G., Navajas, M., Hillier, J., & Birch, A.N. (2003). Clonal composition of the peach-potato aphid Myzus persicae (Homoptera: Aphididae) in France y Scotland: Comparative analysis with IGS fingerprinting y microsatellite markers. Annals of Applied Biology, 142(3), 255-267. https://doi.org/10.1111/j.1744-7348.2003.tb00249.x 19. Fontaine, S., Caddoux, L., Brazier, C., Bertho, C., Bertolla, P., Micoud, A., & Roy, L. (2011). Uncommon associations in target resistance among French populations of Myzus persicae from oilseed rape crops. Pest Management Science, 67(8), 881-885. https://doi.org/10.1002/ps.2224 20. Fuentes-Contreras, E., Figueroa, C.C., Silva, A.X., Bacigalupe, L.D., Briones, L.M., Foster, S.P., & Unruh, T.R. (2013). Survey of resistance to four insecticides and their associated mechanisms in different genotypes of the green peach aphid (Hemiptera: Aphididae) from Chile. Journal of Economic Entomology, 106(1), 400-407. https://doi.org/10.1603/EC12176 21. Fuentes-Contreras, E., Figueroa, C. C., Reyes, M., Briones L. M., & Niemeyer, H. M. (2004). Genetic diversity and insecticide resistance of Myzus persicae (Hemiptera: Aphididae) populations from tobacco in Chile: evidence for the existence of a single predominant clone. Bulletin of Entomological Research, 94(1), 11-18. https://doi.org/10.1079/BER2003275 22. Guedes, R. N. C., Smagghe, G., Stark, J. D., & Desneux, N. (2016). Pesticide induced stress in arthropod pests for optimized integrated pest management programs. Annual Review of Entomology, 61(1), 43-62. https ://doi.org/10.1146/annurev-ento-01071 5-023646. https://doi.org/10.1146/annurev-ento-010715-023646 23. Goudet, J. (1995). FSTAT (version.2.9.3.2): a computer program to calculate F-statistics. Journal of Heredity, 86(6), 485-486. https://doi.org/10.1093/oxfordjournals.jhered.a111627 24. Guillemaud, T., Mieuzet, L., & Simon, J. C. (2003). Spatial and temporal genetic variability in French populations of the peach-potato aphid, Myzus persicae. Heredity, 91(2), 143-152. https://doi.org/10.1038/sj.hdy.6800292 25. Kasprowicz, L., Malloch, G., Pickup, J., & Fenton. B. (2008). Spatial and temporal dynamics of Myzus persicae clones in fields and suction traps. Agricultural and Forest Entomology, 10(2), 91-100. https://doi.org/10.1111/j.1461-9563.2008.00365.x 26. Malloch, G., Highet, F., Kasprooicz, L., Pickup, J., Neilson, R., & Fenton, B. (2006). Microsatellite marker analysis of peach-potato aphids (Myzus persicae, Homoptera: Aphididae) from Scottish suction traps. Bulletin of Entomological Research, 96(6), 573-582. https://doi.org/10.1017/BER2006459 27. Margaritopoulos, J. T., Malarky, G., Tsitsipis, J. A., & Blackman, R. L. (2007). Microsatellite DNA and behavioural studies provide evidence of host-mediated speciation in Myzus persicae (Hemiptera: Aphididae). Biological Journal of the Linnean Society, 91(4), 687-702. https://doi.org/10.1111/j.1095-8312.2007.00828.x 28. Margaritopoulos, J. T., Skouras, P. J., Nikolaidou, P., Manolikaki, J., Maritsa, K., Tsamandani, K., Kanavaki, O. M., …, Tsitsipis, J. A. (2007). Insecticide resistance status of Myzus persicae (Hemiptera: Aphididae) populations from peach and tobacco in mainland Greece. Pest Management Science, 63(8), 821-829. https://doi.org/10.1002/ps.1409 29. 57. Margaritopoulos, J. T., Tsourapas, C., Tzortzi, M., Kanavaki, O. M., & Tsitsipis, J. A. (2005). Host selection by winged colonisers within the Myzus persicae group: a contribution towards understanding host specialisation. Ecological Entomology, 30(4), 406-418. https://doi.org/10.1111/j.0307-6946.2005.00700.x 30. Martínez-Torres, D., Foster, S. P., Field, L. M., Devonshire, A. L., & Williamson, M. S. (1999). A sodium channel point mutation is associated with resistance to DDT and pyrethroid insecticides in the peach-potato aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). Insect Molecular Biology, 8(3), 339-346. https://doi.org/10.1046/j.1365-2583.1999.83121.x 31. Moores, G. D., Devine, G. J., & Devonshire, A. L. (1994). Insecticide-insensitive acetylcholinesterase can enhance esterase-based resistance in Myzus persicae and Myzus nicotianae. Pesticide Biochemistry and Physiology, 49(2), 114-120. https://doi.org/10.1006/pest.1994.1038 32. Nabeshima, T., Kozaki, T., Tomita, T., & Kono, Y. (2003). An amino acid substitution on the second acetylcholinesterase in the pirimicarb-resistant strains of the peach potato aphid, Myzus persicae. Biochemical and Biophysical Research Communications, 307(1), 15-22. https://doi.org/10.1016/S0006-291X(03)01101-X 33. Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945-959. 34. Raymond, M., & Rousset, F. (1995). Population genetics software for exact tests and ecumenicism. Journal of Heredity, 86(3), 248-249. https://doi.org/10.1093/oxfordjournals.jhered.a111573 35. Rouger, R., Reichel, K., Malrieu. F., Masson, J. P., & Stoeckel, S. (2016). Effects of complex life cycles on genetic diversity: cyclical parthenogenesis. Heredity, 117(5), 336-347. doi: 10.1038/hdy.2016.52. https://doi.org/10.1038/hdy.2016.52 36. Rubiano-Rodríguez, J. A., Fuentes-Contreras, E., Figueroa, C. C., Margaritopoulos, J. T., Briones, L. M., & Ramírez, C. C. (2014). Genetic diversity and insecticide resistance during the growing season in the green peach aphid (Hemiptera: Aphididae) on primary and secondary hosts: a farm-scale study in central. Bulletin of Entomological Research, 104(2), 182-194. https://doi.org/10.1017/S000748531300062X 37. Sánchez, J.A., Spina M. L., Guirao, P., & Cánovas, F. (2013). Inferring the population structure of Myzus persicae in diverse agroecosystems using microsatellite markers. Bulletin of Entomological Research, 103(4), 473-484. https://doi.org/10.1017/S0007485313000059 38. Servicio Agrícola y Ganadero (SAG). (2012). Lista de plaguicidas autorizados. Recuperado de http://WWW.sag.gob.cl/OpenDocs/asp/pagDefault.asp?boton=Doc51& argInstanciaId=51&argCarpetaId=327&argTreeNodosAbiertos=(327)(-51) &argTreeNodoActual=327&argTreeNodoSel=7. 39. Schneider, S., Roessli, D., & Excoffier, L. (2000). Arlequin. A software for population genetic data analysis, Version 2.0. Geneva, Switzerland: Genetics and Biometry Laboratory, Universidad de Ginebra. 40. Schuelke, M. (2000). An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology, 18(2), 233-234. https://doi.org/10.1038/72708 41. Srigiriraju, L., Semtner, P. J., Anderson, T. D., & Bloomquist, J. R. (2010). Monitoring for MACE resistance in the tobacco-adapted form of the green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae) in the eastern United States. Crop Protection, 29(2), 197-202. https://doi.org/10.1016/j.cropro.2009.11.006 42. Sunnucks, P., De Barro, P.J., Lushai, G., Maclean, N. & Hales, D.F. (1997) Genetic structure of an aphid studied using microsatellite: cyclic parthenogenesis, differentiated lineages, and host specialization. Molecular Ecology, 6(11), 1059-1073. https://doi.org/10.1046/j.1365-294X.1997.00280.x 43. Sunnucks, P., & Hales, D. F. (1996). Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae). Molecular Biology and Evolution, 13(3), 510-524. https://doi.org/10.1093/oxfordjournals.molbev.a025612 44. Van Toor, R.F., Malloch, G.L., Anderson, E.A., Daoson, G., & Fenton, B. (2013). Insecticide resistance profiles can be misleading in predicting the survival of Myzus persicae genotypes on potato crops following the application of different insecticide classes. Pest Management Science, 69(1), 93-103. https://doi.org/10.1002/ps.3370 45. Van Toor, R. F., Foster, S. P., Anstead, J. A., Mitchinson, S., Fenton, B., & Kasprowicz, L. (2008). Insecticide resistance and genetic composition of Myzus persicae (Hemiptera: Aphididae) on field potatoes in New Zealand. Crop Protection, 27(2), 236-247. https://doi.org/10.1016/j.cropro.2007.05.015 46. Van Oosterhout, C., Hutchinson, O.F., Oills, D. P. M., & Shipley, P. (2004). Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology, 4(3), 535-538. https://doi.org/10.1111/j.1471-8286.2004.00684.x 47. Vialatte, A., Dedryver, C. A., Simon, J. C., Galman, M., & Plantegenest, M. (2005). Limited genetic exchanges between populations of an insect pest living on uncultivated and related cultivated host plants. Proceedings of the Royal Society B-Biological Sciences, 272(1567), 1075-1082. https://doi.org/10.1098/rspb.2004.3033 48. Vorburger, C. (2006). Temporal dynamics of genotypic diversity reveal strong clonal selection in the aphid Myzus persicae. Journal of Evolutionary Biology, 19(1), 97-107. https://doi.org/10.1111/j.1420-9101.2005.00985.x 49. Vorburger, C., Lancaster. M., & Sunnucks, P. (2003). Environmentally related patterns of reproductive modes in the aphid Myzus persicae and the predominance of two 'superclones' in Victoria, Australia. Molecular Ecology, 12(12), 3493-3504. https://doi.org/10.1046/j.1365-294X.2003.01998.x 50. Voudouris, C. C., Kati, A. N., Sadikoglou, E., Williamson, M., Skouras, P. J., Dimotsiou, O.,… Margaritopoulos, J. T. (2016). Insecticide resistance status of Myzus persicae in Greece: long-term surveys and new diagnostics for resistance mechanisms. Pest Management Science, 72(4), 671-683. https://doi.org/10.1002/ps.4036 51. Wilson, A. C. Sunnucks, C., P., Blackman, R. L., & Hales, D. F. (2002). Microsatellite variation in cyclically parthenogenetic populations of Myzus persicae in southeastern Australia. Heredity, 88(4), 258-266. https://doi.org/10.1038/sj.hdy.6800037 52. Zamoum, T., Simon, J. -C., Crochard, D., Ballanger, Y., Lapchin, L., Vanlerberghe-Masutti, F., & Guillemaud, T. (2005). Does insecticide resistance alone account for the low genetic variability of asexually reproducing populations of the peach-potato aphid Myzus persicae. Heredity, 94(6), 630-639. https://doi.org/10.1038/sj.hdy.68006730


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem