Mostrar el registro sencillo del ítem

Isolation and Identification of Microbial Species Found in CocoaFermentation as Microbial Starter Culture Candidatesfor Cocoa Bean Fermentation in Colombia

dc.creatorLozano Tovar, María Denis
dc.creatorTibasosa, Geraldine
dc.creatorGonzález, Carlos Mario
dc.creatorBallestas Álvarez, Karen Lorena
dc.creatorLópez Hernández, Martha del Pilar
dc.creatorRodriguez, Fernando
dc.date2024-07-31T13:32:33Z
dc.date2024-07-31T13:32:33Z
dc.date2020-12-31
dc.date2020
dc.date.accessioned2024-11-14T15:00:18Z
dc.date.available2024-11-14T15:00:18Z
dc.identifierhttps://www.ccrjournal.com/index.php/ccrj/article/view/443
dc.identifier2406-9574
dc.identifierhttp://hdl.handle.net/20.500.12324/39725
dc.identifierhttps://doi.org/10.22302/iccri.jur.pelitaperkebunan.v36i3.443
dc.identifierreponame:Biblioteca Digital Agropecuaria de Colombia
dc.identifierinstname:Corporación colombiana de investigación agropecuaria AGROSAVIA
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/85224
dc.descriptionMicrobial activity involved in the cocoa beans fermentation process is essential to maintain and improve the organoleptic and nutritional qualities of chocolate; therefore, the aim of this investigation was to search and select microbial isolates with the potential to improve the quality of cocoa beans. Fermentation experimentswere conducted on farms located in Maceo (Antioquia), San Vicente de Chucurí (Santander), and Rivera and Algeciras (Huila), Colombia. Yeast, lactic acid bacteria (LAB), acetic acid bacteria (AAB), and mesophilic aerobic microorganisms were obtained from different fermentation batches. The growth of these microorganismswas tested in six treatments as follows: 50% cocoa pulp agar (CPA), high concentrations of glucose (10%), ethanol (5%), and acetic acid (7%), an acidic pH of 3.0, and a high temperature of 50oC for 24 h. The isolates with the highest growth were identified by 18S and 16S rRNA gene analysis, revealing a high diversity ofspecies associated with cocoa fermentation, including eight species of yeasts (Debaryomyces hansenii, Meyerozyma guillermondii, Wickerhanomyces anomalus, Pichia guillermondii, Pichia kudriavzevii, Trichosporon asahii, Candida parapsilosis, and Pichia manshurica), six species of LAB (Pediococcus acidilactici, Lactobacillus brevis, Lactobacillus plantarum, Lactobacillus farraginis, Lactobacillus rhamnosus, and Leuconostoc mesenteroides), four species of AAB (Gluconobacter japonicus, Acetobacter tropicalis, Acetobacter pasteurianus, and Acetobacter malorum/tropicalis), and three species of Bacillus spp. (Bacillusaryabhattai /megaterium, Bacillus subtilis, and Bacillus coagulans). In general, microbial populations increased in cocoa batches after 12 h of fermentation and decreased after 84-96 h. All the yeast isolates grew in 10% glucose and CPA, 85.7% in 5% ethanol, and 95% at a pH of 3.0. All the yeast isolates were affectedby 7% acetic acid and incubation at 50oC for 24 h. Eighty-five percent of the LAB grew in 10% glucose, 100% in 5% ethanol, 42.8% in CPA, 64% at a pH of 3.0, and 35.7% grew after being exposed to 50oC for 24 h; all were affected by 7% acetic acid. As for the AAB, 100% grew in 10% glucose, 71% in 7% ethanol, 100% grew in CPA, in 7% acetic acid, and at a pH of 3.0, while 100% were affected by incubation at 50oC. Three yeast isolates, W. anomalus, D. hansenii and M. guillermondii, three LAB isolates, P. acidilactici, L. brevis, and L. plantarum, and three AAB isolates, A. tropicalis, A. pasteurianus and G. japonicus, were selected as promising strains to be used in a microbial starter culture for cocoa bean fermentation to improve the organoleptic quality of cocoa. Article Details
dc.descriptionMinisterio de Agricultura y Desarrollo Rural - MADR
dc.descriptionCacao-Theobroma cacao
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherIndonesian Coffee and Cocoa Research Institute
dc.relationPelita Perkebunan (a Coffee and Cocoa Research Journal)
dc.relation36
dc.relation3
dc.relation236
dc.relation248
dc.relationArdhana, M.M. & G.H. Fleet (2003). The micro-bial ecloogy of cocoa bean fermenta-tions in Indonesia. International Journalof Food Microbiology, 86, 87–99.
dc.relationBarros, R.R.; M.D. Carvalho; J.M. Peralta;R.R. Facklam & L.M. Teixeira (2001).Phenotypic and genotypic characterisationof Pediococcus strains isolated fromhuman clinical sources. Journal ofClinical Microbiology, 39, 1241–1246.
dc.relationBoekhout, T. & J. Phaff (2003). Yeast biodiversity.p. 1–29. In:Yeasts in Food, Beneficialand Detrimental Aspects (T. Boekhout& V. Robert, Eds.), CRC Press, Florida.
dc.relationBreuer, U. & H. Harms (2006). Debaryomyceshansenii–an extremophilic yeast withbiotechnological potential. Yeast, 23,415–437.
dc.relationCamu, N.; T.De Winter, N.; T.; S.K. Addo;J.S. Takrama; H. Bernaert & L. De Vuyst(2008). Fermentation of cocoa beans:influence of microbial activities andpolyphenol concentrations on theflavour of chocolate. Journal of theScience of Food and Agriculture, 88,2288–2297.
dc.relationCaporaso, N.; M. Whitworth; M. Fowler &I. Fisk (2018). Hyperspectral imagingfor non-destructive prediction of fermen-tation index, polyphenol content andantioxidant activity in single cocoabeans. Food Chemistry, 258, 343–351.
dc.relationCoda, R.; A. Cassone; C.G. Rizzello; L. Nionelli;G. Cardinali & M. Gobbetti (2011).Antifungal activity of Wickerhamomycesanomalus and Lactobacillus plantarumduring sourdough fermentation: iden-tification of novel compounds and long-term effect during storage of wheat bread.Applied and Environmental Microbiology,77, 3484–3492.
dc.relationDella Riccia, D.N.; F. Bizzini; M. Perilli;A. Polimeni;V. Trinchieri; G. Amicosante & M. Cifone(2007). Anti-inflammatory effects ofLactobacillus brevis (CD2) on periodontaldisease. Oral Diseases, 13, 376–385.
dc.relationDe Melo, G.V.; K.T. Magalhaes; E.G. de Almeida;I. Da Silva & R.F. Schwan (2013). Spontaneuscocoa bean fermentation carried out ina novel-desing stainless Steel tank:influence on the dynamics of microbialpopulations and physical-chemicalproperties. International JournalofFood Microbiology, 161, 121–133.
dc.relationDe Vuyst, L.; T. Lefeber; Z. Papalexandratou &N. Camu (2010). The functional role oflactic acid bacteria in cocoa bean fermen-tation. p. 301–25. In: Biotechnology ofLactic Acid Bacteria: Novel Applications(F. Mozzi; R.R Raya & G.M. Vignolo,Eds.), Wiley-Blackwell, Oxford.
dc.relationDe Vuyst, L. & S. Weckx (2016). The cocoa beanfermentation process: from ecosystemanalysis to starter culture development.Journal of Applied Microbiology, 121,5–17.
dc.relationDuarte, W.F.; D.R. Dias; J.M. Oliveira; J.A. Teixeira;J.B. Almeida & R.F. Schwan (2010).Characterizarion of different fruit winesmade from cacao, cupuassu, gabiroba,jaboticaba and umbu. LWT - Food ScienceandTechnology, 43, 1564–1572.
dc.relationFreitas, S. (1998). Cocoa fermentations conductedwith a defined microbial cocktail inoculum.Applied and Environmental Microbiology,64, 1477–1483.
dc.relationGarcía, J.M.; S.M. Castro; R. Casquete; J. Silva;R. Queirós; J.A. Saraiva & P. Teixeira(2017). Enhancement of bacteriocinproduction and antimicrobial activityof Pediococcus acidilactici HA-6111-2.Acta Aliment Hung, 46, 92–99.
dc.relationGuerber, J.C.; B. Liu & J.C. Correll (2003). Charac-terization of diversity in Colletotrichumacutatum sensu lat o by sequen ceanalysis of two gene introns, mtDNA andintro RFLPs, and mating compatibility.Mycologia, 95, 872–895.
dc.relationHansen, C.E; M. Del Olmo & C. Burri (1998).Enzyme activities in cocoa beans duringfermentation. Journalof theScienceofFoodand Agriculture, 77, 273–281.
dc.relationHo, V.T.; J. Zhao & G. Fleet (2014). Yeast areessential for cocoa bean fermentation.International Journal of Food Micro-biology, 174, 72–82
dc.relationLavermicocca, P.; F. Valerio; A. Evidente;S. Lazzaroni; A. Corsetti & M. Gobbetti(2000). Purification and characterizationof novel antifungal compounds fromthe Sourdough Lactobacillus plantarumStrain 21 B. Applied and EnvironmentalMicrobiology, 66, 4084–4090.
dc.relationLefeber, T.; W. Gobert; G. Vrancken; N. Camu& L.D. Vuyst (2011). Dynamics andspecies diversity of communities of lacticacid bacteria and acetic acid bacteriaduring spontaneous cocoa bean fermen-tation in vessels. Food Microbiology,28, 457–464
dc.relationLefeber, T.; Z. Papalexandratou; W. Gobert;N. Camu & L. De Vuyst (2012). On-farmimplementation of a starter culture forimproved cocoa bean fermentation andits influence on the flavour of choco-lates produced thereof. Food Micro-biology, 30, 379–392.
dc.relationLima, L.J.R.; M.H. Almeida; M.J. Rob Nout &M.H. Zwietering (2011). Theobromacacao L., “the food of the gods”: Qualitydeterminants of commercial cocoabeans, with particular reference to theimpact of fermentation. Critical Reviews in Food Science and Nutrition, 51,731–761.
dc.relationLópez, M.; J. Criollo; M. Hernández; M.D. Lozano-Tovar (2019). Physicochemical andmicrobiological dynamics of the fermen-tation of the CCN51 cocoa material inthree maturity stages. Revista Brasileirade Fruticultura, 41, 1–13.
dc.relationMancini, A. & F. Fava (2016). Probiotic potentialof a high GABA producing strain,Lactobacillus brevis FEM 1874, isolatedfrom traditional “wild” Alpine cheese.Journal of Clinical Gastroenterology,50, 220–221.
dc.relationMeersman, E.; J. Steensels; N. Struyt; T. Paulus;V. Saels; M. Mathawan; L. Allegaert;G. Vrancken & K. Verstrepen (2015a).Tuning chocolate flavor through develop-ment of thermotolerant Saccharomycescerevisiae starter cultures with increasedacetate ester production. Applied andEnvironmental Microbiology, 82, 732–746.
dc.relationMeersman, E.; J. Steensels; T. Paulus; N. Struyf;V. Saels; M. Mathawan & K.J. Verstrepen(2015). Breeding strategy to generaterobust yeast starter cultures for cocoapulp fermentations. Applied and Envi-ronmental Microbiology, 81, 6166–6176.
dc.relationMerrifield, D.L. (2013). Probiotic Pediococcusacidilactici modulates both localisedintestinal-and peripheral-immunityin tilapia (Oreochromis niloticus).FishandShellfish Immunology, 35,1097–1104.
dc.relationMoens, F.; T. Lefeber & L. De Vuyst (2014).Oxidation of metabolites highlightsthe microbial interactions and role ofAcetobacter pasteurianus during cocoabean fermentation. Applied and Envi-ronmental Microbiology, 80, 1848–1857.
dc.relationMoreira, I.M.; M.G. Miguel; W.F. Duarte; D.R. Dias& R.F. Schwan (2013). Microbial succes-sion and the dynamics of metabolites andsugars during the fermentation of threedifferent cocoa (Theobroma cacao L.)hydrids. Food Research International,54, 9–17.
dc.relationPELITA PERKEBUNAN, Volume 36, Number 3, December 2020 Edition248Nakayan, P.; A. Hameed; S. Singh; L. Young;M. Hung & C. Youn (2013). Phosphate-solubilizing soil yeast Meyerozymaguillermondii CC1 improves maize (Zeamays L.) productivity and minimizesrequisite chemical fertilization. Plantand Soil, 373, 1–2.
dc.relationNavarro, D.; E. Mateo; M. Torija & A. Mas (2013).Acetic acid bacteria in grape must. AceticAcid Bacteria, 2, 19–23.
dc.relationNguyen, T.D.; J.H. Kang & M.S. Lee (2007).Characterization of Lactobacillusplantarum PHO4, a potential probioticbacterium with cholesterol-loweringeffects. International Journal of FoodMicrobiology, 113, 358–361.
dc.relationNielsen, D.S.; O.D. Teniola; L. Ban-Koffi; M. Owusu;T.S. Andersson & W.H. Holzapfel (2007).The microbiology of Ghanaian cocoafermentations analysed using culture-dependent and culture-independentmethods. International Journal ofFood Microbiology, 114, 168–186.
dc.relationOhmori, S.; T. Uozumi & T. Beppu (1982). Loss ofacetic acid resistence and etanol oxidizingability in an Acetobacter strain. Agri-cultural and Biological Chemistry, 46,381–389.
dc.relationPelaez, P.; S. Guerra & D. Contreras (2016). Changesin physical and chemical characteristics offermented cocoa (Theobroma cacao)beans with manual and semi-mecha-nized transfer, between fermentationboxes. Scientia Agropecuaria, 7, 111–119.
dc.relationRodríguez, S.Y. (2008). Identificación moleculary establecimiento del código de barras, BarCode, de levaduras nativas. PontificiaUniversidad Javeriana - Puj - Sede Bogotá.
dc.relationRonka, E.; E. Malinen; M. Saarela; M. Rinta-Koski; J. Aarnikunnas & A. Palva(2003). Probiotic and milk technologicalproperties of Lactobacillus brevis.International Journal of Food Micro-biology, 83, 63–74.
dc.relationSchultz, M.; C. Vektkamp; L. Dieleman; W. Grenther;P. Wyrick; S. Tonkonogy & S. Sartor(2002). Lactobacillus plantarum 299V in the treatment and prevention ofspontaneous colitis in interleukin-10-deficient mice. Inflammatory BowelDiseases, 8, 71–80.
dc.relationSchwan, R. & A. Wheals (2004). The microbiologyof cocoa fermentation and its role inchocolate quality. Critical Reviews inFood Science and Nutrition, 44, 205–221.
dc.relationStröm, K.; J. Sjorgen; A. Broberg & J. Schnurer(2002). Lac tobaci ll us pl antarumMiLAB 393 produces the antifungalcyclic dipeptides cyclo (L-Phe-L-Pro)and cyclo (L-Phe-trans-4-OH-L-Pro)and 3-phenyllactic acid. Applied andEnvironmental Microbiology, 68,4322–4327.
dc.relationSunoj, S.; C. Igathinathane & R. Visvanathan(2016). Nondestructive determinationof cocoa bean quality using FT-NIRspectroscopy. Computers and Elec-tronics in Agriculture, 124, 234–242.
dc.relationSyukur, S.; B. Bisping; Z. Noli & E. Purwati (2013).Antimicrobial properties and lactaseactivities from selected probiotic Lacto-bacillus brevis associated with greencacao fermentation in West Sumatra,Indonesia. Journal of Probiotics andHealth, 1, 4.
dc.relationThompson , S.S.; K.B. Miller; A. Lopez &N. Camu (2013). Cocoa and coffee.p. 881–889. In: Food. Microbiology:Fundamentals and Frontiers(M.P. Doyle& R.L. Beuchat, Eds.), 4th edition,ASM Press, Washington DC.
dc.relationTortoló, C.K. & G.A. Bell (2015). Producciónde proteínas recombinantes en Bacillusmegaterium: estado del arte ICIDCA.Sobre los Derivados de la Caña deAzúcar, 49, 22–26.
dc.relationWullt, M.; M.L. Hagslatt & I. Odenhoit (2003).Lactobacillus plantarum 299v for thetreatment of recurrent Clostridiumdif f ic i le-a ssocia t ed di a r rh oea: adouble-blind, placebo-, controlled trial.Scandinavian Journal of InfectiousDiseases, 35, 365–367.
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.sourcePelitaPerkebunan; vol. 36, Núm. 3 (2020): PelitaPerkebunan (Dec);p. 236-248.
dc.subjectCocoa bean
dc.subjectFermentation
dc.subjectTheobroma
dc.subjectMicroorganisms
dc.subjectArreglo y sistemas de cultivo - F08
dc.subjectTheobroma cacao
dc.subjectCultivo
dc.subjectFermentación
dc.subjectMicroorganismo
dc.subjectCacao
dc.subjecthttp://aims.fao.org/aos/agrovoc/c_7713
dc.subjecthttp://aims.fao.org/aos/agrovoc/c_1972
dc.subjecthttp://aims.fao.org/aos/agrovoc/c_2855
dc.subjecthttp://aims.fao.org/aos/agrovoc/c_4807
dc.titleIsolation and Identification of Microbial Species Found in CocoaFermentation as Microbial Starter Culture Candidatesfor Cocoa Bean Fermentation in Colombia
dc.titleIsolation and Identification of Microbial Species Found in CocoaFermentation as Microbial Starter Culture Candidatesfor Cocoa Bean Fermentation in Colombia
dc.typeArtículo científico
dc.coverageColombia
dc.audienceInvestigador
dc.thumbnailhttps://repository.agrosavia.co/bitstream/20.500.12324/39725/4/Ver_Documento_39725.pdf.jpg


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem